Moins cher, un réacteur à sels fondus ?
On peut comprendre que certains ont du mal à croire une telle promesse, venant d’un secteur nucléaire qui a tant de mal à respecter ses engagements, que ce soit pour les temps de construction ou pour le coût des centrales.
Mais un réacteur à sels fondus est conçu autour d’un combustible liquide. C’est une technologie fondamentalement différente des réacteurs à eau pressurisée qui sont exploités dans toutes les centrales nucléaires françaises aujourd’hui.
Selon Jean-Marc Jancovici, en caricaturant à peine, le cout du nucléaire est à 30% un « cout technique » […] et à 70% le « cout de la précaution » (ce que d’aucuns pourraient appeler le « cout de la trouille »
Pour travailler de façon rationnelle sur cette trouille, les ingénieurs spécialistes dans les études de sécurité utilisent un outil appelé « arbre de défaillances », qui permet de représenter graphiquement les combinaisons possibles d’événements qui permettent la réalisation d’un événement indésirable prédéfini. Le dialogue entre un vendeur de réacteur comme Framatome et une autorité de sécurité s’articule autour de cet arbre de défaillances.
Avec 60 ans d’expérience dans la conception, construction et exploitation des réacteurs à eau pressurisée, l’arbre de défaillances pour cette technologie est largement connu et documenté, et c’est pourquoi le niveau de sécurité de ces machines est excellent.
Mais c’est un grand arbre.
Il y a une relation assez directe entre la taille de l’arbre de défaillances et le coût de la centrale. Alors que le concept fondamental du réacteur n’a pas changé depuis 60 ans, le retour d’expérience des incidents et accidents nucléaires a ajouté de nouvelles branches, brindilles et feuilles à l’arbre de défaillances. Et chaque feuille doit être couverte par au moins un système de sécurité, pour assurer une probabilité d’accident très faible, ce qui fait augmenter le coût.
Le paradigme actuel est qu’on a tellement de retour d’expérience avec le réacteur à eau pressurisée qu’il est pratiquement impossible de changer le concept. On doit vivre avec les dangers qui sont intrinsèques à ce concept et travailler pour réduire les risques. Dans le diagramme ci-dessous, cela implique de suivre la flèche bleue :
Revenons à l’exemple de l’EPR, qui est un exemple type de ce paradigme. Dans un réacteur à eau pressurisée, la perte de la capacité à refroidir le réacteur est un dysfonctionnement grave qui peut avoir comme conséquence une fusion du cœur. Les pompes de refroidissement qui font circuler l’eau pressurisée autour des assemblages de combustible doivent fonctionner à tout moment. Des branches conséquentes de l’arbre de défaillance sont dédiées à l’analyse des risques associés à ce danger.
Et si on perd l’alimentation électrique des pompes ?
- On démarre un générateur diesel de secours pour rétablir le courant.
Et si le générateur de secours est en panne ?
- On a un autre générateur de secours à côté du premier.
Et si les deux souffrent d’une faute commune ?
- Un troisième générateur de secours, fabriqué par un autre fournisseur, est installé à côté des deux autres.
Et si le bâtiment qui contient les générateurs est endommagé ou détruit (inondation, chute d’avion, explosion terroriste…) ?
- Dans un autre bâtiment de l’autre côté de la centrale, il y a 3 autres générateurs de secours.
On comprend facilement que cette stratégie de redondance est un fort inducteur de complexité, de coût, et de temps pour la conception, délivrance de permis, construction & mise au point. Quand on suit la flèche bleue, le coût augmente.
Les architectes atomiques qui sont à l’œuvre dans la conception des réacteurs à sels fondus ont un paradigme différent. Pour réduire le coût d’une centrale, le concept peut être simplifié si on réduit ou élimine les dangers.
Avec un combustible liquide, tout un tas d’outils, d’astuces et de solutions élégantes et ingénieuses sont à la disposition de l’architecte qui sont tout simplement impossibles à mettre en œuvre quand le combustible est un solide. En suivant la flèche verte on a tendance à réduire le coût, par un grand élagage de l’arbre de défaillances :
Pression
Dans un réacteur à eau pressurisée, une énergie potentielle énorme est stockée dans l’eau chaude sous pression. Si elle est relâchée soudainement, cette eau présente le danger de se transformer en vapeur et de propulser des matières radioactives dans l’environnement. L’accumulation de produits de fission gazeux dans les gaines de combustible représente un deuxième danger de pression.
Dans un réacteur à sels fondus, le combustible liquide est à pression atmosphérique. Ces dangers sont éliminés.
Terme source volatil
Le terme source – les types et quantités de matières radioactives ou dangereuses rejetées dans l’environnement à la suite d’un accident – représente un danger différent en fonction de son état.
Les isotopes radioactifs qui sont à l’état solide ou liquide n’iront pas loin en cas d’accident. Mais ceux qui sont à l’état gazeux peuvent être dispersés dans l’atmosphère dans un nuage radioactif capable de contaminer de vastes surfaces.
Dans un combustible conventionnel à oxyde solide certains produits de fission qui posent un risque pour la santé humaine, comme le césium et l’iode, sont volatils – ils existent à l’état gazeux.
Dans un combustible à sels fondus ces isotopes sont confinés chimiquement par le liquide ionique, avec une pression de vapeur saturante quasiment nulle. La quantité de terme source volatil est réduite par un facteur d’environ un million. Le danger qui contribue le plus à la « trouille » de l’énergie nucléaire est pratiquement éliminé.
Contrôle actif de la réactivité
Dans un réacteur à eau pressurisée, la puissance du réacteur est contrôlée à l’aide de barres de contrôle qui absorbent des neutrons.
Quand on veut augmenter la réactivité on lève les barres de contrôle. Moins de neutrons sont absorbés et la réaction en chaîne accélère. Quand on veut réduire la réactivité ou arrêter le réacteur on baisse les barres de contrôle. C’est un système de contrôle actif, piloté par des mécanismes, par des logiciels et par des humains. Une défaillance peut mettre le réacteur dans un état instable et être à l’origine d’un accident de criticité.
Un réacteur à sels fondus est un système homéostatique, autorégulant, où le contrôle de la réactivité est géré passivement, sans barres de contrôle. Quand la température du combustible augmente, le liquide se dilate. Chaque atome se trouve un petit peu plus loin des autres, et la probabilité de fissionner un noyau lourd diminue, donc la réactivité et la puissance diminuent aussi. Quand la température baisse, le liquide se contracte et la puissance augmente. Les lois de la physique sont aux commandes.
Ecoutons le directeur scientifique de l’Institut de Radioprotection et de Sûreté Nucléaire :
Refroidissement actif
Dans tous les réacteurs nucléaires, la chaleur est générée de deux manières :
- La fission de noyaux lourds d’atomes, qui génère deux atomes plus petits appelés produits de fission (environ 89% de la chaleur produite)
- La désintégration des produits de fission radioactifs (les 11% de chaleur restants)
On peut arrêter la fission à tout moment. Dans un réacteur à eau pressurisée par exemple on fait tomber les barres de contrôle dans le cœur – après 2 secondes il n’y a plus de fission. Mais il est impossible d’arrêter la désintégration des produits de fission. Dans un combustible solide, cette chaleur doit passer par conduction à travers la matière de chaque pastille, et ensuite par conduction à travers la gaine pour arriver dans l’eau de refroidissement. Il est essentiel d’évacuer la chaleur pour éviter une montée en température dangereuse qui peut finir par une fonte des pastilles de combustible, d’où l’importance des pompes dans un réacteur à eau pressurisée, pour assurer un refroidissement actif, et des générateurs de secours évoqués plus haut pour assurer un fonctionnement en permanence de ces pompes.
Un combustible liquide profite du phénomène physique de la convection pour transporter la chaleur produite par les produits de fission vers les parois du réacteur, où elle peut être évacuée par des systèmes passifs qui ne nécessitent aucune intervention humaine.
Réactivité chimique
Dans un réacteur nucléaire, les matériaux utilisés peuvent être une source de dangers. Les pastilles de combustible solide dans un réacteur à eau pressurisée sont revêtues d’une gaine en alliage de zirconium, un matériau qui a beaucoup d’avantages pour le fonctionnement du réacteur. Mais le zirconium peut réagir chimiquement avec l’eau autour des gaines si elles ne sont pas refroidies correctement, dégageant de l’hydrogène :
Pour gérer ce danger, les réacteurs EPR sont équipés de combineurs, capables de reconvertir l’hydrogène en eau, un système qui augmente le coût du réacteur.
On peut mentionner ici les réacteurs à neutrons rapides refroidis avec du sodium liquide. Le sodium est un matériau très intéressant pour la physique d’un réacteur, mais qui présente des challenges lourds (et donc chers) dans la gestion de sa réactivité chimique :
Mais ce même sodium, dans sa forme ionique et combiné avec un autre élément réactif – le chlore – vous en avez dans votre cuisine.
C’est justement parce que les sels sont composés d’éléments très réactifs qu’une fois combinés avec une liaison ionique ils forment des substances chimiquement très stables. Que se passe-t-il s’il y a une fuite dans un réacteur à sels fondus ?
Prolifération
Les vendeurs de double vitrage ne parlent plus de vitrage « anti-effraction », préférant le terme « retardataire d’effraction ». Si un cambrioleur veut casser votre fenêtre, il y arrivera s’il a assez de temps.
Pour la prolifération nucléaire c’est un peu pareil – dès qu’on utilise des matières fissiles il est impossible d’éliminer totalement le danger de leur contournement pour des utilisations militaires ou terroristes. Cette branche de l’arbre de défaillance ne peut pas être coupée, mais elle peut être élaguée si on rend la vie extrêmement fastidieuse pour une organisation avec de telles intentions.
Les réacteurs à sels fondus ont plusieurs attributs qui réduiraient ce danger :
- Ils peuvent être alimentés par des combustibles avec des niveaux d’impuretés désavantageux pour un malfaiteur.
- Le combustible dans le réacteur est protégé par le rayonnement intense des produits de fission.
- Les combustibles peuvent être « dénaturés » avec de l’uranium naturel.
- Si un retraitement en ligne est utilisé, les déchets peuvent être exempts de matières fissiles.
- Si le cycle de combustible thorium – uranium est employé, la matière fissile est protégée par les descendants de l’Uranium-232, très radioactifs.
- Il n’est pas nécessaire d’utiliser de l’uranium hautement enrichi
Réserve de réactivité
Les combustibles solides sont placés dans un réacteur à eau pressurisée pour une période typiquement de 12 à 18 mois. Pour assurer un fonctionnement à pleine puissance à la fin de cette période il faut commencer le cycle avec une réserve de matière fissile. En début de cycle, sans les barres de contrôle, le réacteur serait en état de sur-criticité.
Pendant le cycle, la réaction en chaîne est empoisonnée par le Xénon-135, un produit de fission gazeux qui absorbe beaucoup de neutrons et qui peut provoquer des oscillations de puissance. Ce gaz est produit à l’intérieur de la matière solide du combustible, et reste bloqué dans sa structure. Il est nécessaire de prévoir un surplus de réactivité pour compenser la réactivité perdue par l’absorption des neutrons par le Xénon.
Dans un combustible liquide, les produits de fission gazeux comme le Xénon forment des bulles et sortent du combustible en remontant à la surface du liquide. Avec la possibilité d’ajouter de la matière fissile pendant un cycle, le danger de la réserve de réactivité en début de cycle peut être fortement réduit.
Liquide –> gaz
Dans la production d’énergie, une température plus élevée rime avec efficacité dans la conversion de puissance. Les concepteurs des réacteurs à eau pressurisée rêvent de faire grimper leurs températures de fonctionnement de quelques degrés, pour extraire du système davantage de mégawatts utiles d’énergie nucléaire.
Mais l’eau dans ces réacteurs doit rester à l’état liquide, sinon on met le système dans un état dangereux. Dans le diagramme température / pression ci-dessous, il faut éviter de se rapprocher trop de la ligne entre la région verte et la région orange.
Une façon de s’éloigner de cette ligne limite, c’est d’augmenter la pression (par exemple, un réacteur EPR fonctionne à 155 bars). Mais plus de pression implique plus de danger, et une plomberie plus épaisse, donc plus chère. Le pauvre concepteur est tiré dans tous les sens :
- Augmenter la température pour plus de valeur !
- Baisser la pression pour réduire le coût !
- Pas trop proche de la limite pour la marge de sécurité !
Fonctionnant à pression atmosphérique, le combustible dans un réacteur à sels fondus est typiquement à une température autour de 700°C, donc l’efficacité dans la conversion de puissance passe de 33% à 45-50%. La marge de sécurité est beaucoup plus grande puisque les sels fondus ont un point d’ébullition typiquement autour de 1400°C. Tranquille.
—————————————————————–
Travailler au niveau du concept pour éliminer ou réduire les dangers, au lieu de réduire les risques d’un concept connu, est un nouveau paradigme dans l’énergie nucléaire. Les architectes atomiques qui ont fait ce changement de paradigme sont déjà en dialogue avec des autorités de sûreté – au Canada, en Chine, aux Etats-Unis et ailleurs, mais pas en France. Toujours à la recherche du meilleur compromis entre valeur, coût et temps, la fission liquide les aide à élaguer leurs arbres de défaillances, pour un dialogue plus serein, et une énergie nucléaire plus sûre et moins chère.
Une version anglaise de cet article est disponible ici.
Illustration de l’arbre de défaillances : Alexia Laurie