Une journée technique

Comment innover dans l’énergie nucléaire en France ?

Le thème pour la journée technique organisée par la Société Française d’Energie Nucléaire vendredi 1 décembre était la « place et évolution de l’énergie nucléaire dans le futur« . Quels sont les alternatifs aux grands Réacteurs à Eau Pressurisée comme l’EPR (ou EPR-NM) ?

La journée comprenait des présentations sur les trois technologies suivantes :

VCT

EDF a dévoilé des informations techniques sur leur petit réacteur modulaire (Small Modular Reactor – SMR). Avec une architecture intégrée et compacte, chaque réacteur aurait une puissance de 170 mégawatts électriques, logé dans une enceinte métallique de hauteur 15m et immergée dans un bassin d’eau pour assurer une sécurité passive. D’autres avantages seraient apportés par un bâtiment réacteur semi-enterré couvert par un tumulus de terre, contenant 4 réacteurs et permettant de mutualiser des ressources comme le bassin d’eau ou la salle de commande.

IMG_2680

Cette technologie fait désormais l’objet d’un avant-projet sommaire chez EDF, en partenariat avec le CEA, Naval groupe et Technicatome, qui doit déboucher dans 3 ou 4 ans sur une décision d’engager … ou non … son développement.

Mais le problème des petits réacteurs modulaires, c’est qu’ils sont petits.

Certes, la maîtrise française de la conception et l’exploitation des réacteurs à eau pressurisée permettra de développer cette technologie dans les années 2020, pour une commercialisation vers 2030. Certes, un petit réacteur modulaire sera moins cher que ses gros cousins qui constituent actuellement le parc français. Mais comme il sera environ 10 fois moins puissant qu’un EPR, pas sûr que les leviers économiques des petits réacteurs compensent la perte de valeur de cet effet d’échelle ! En tout cas, les experts économiques de l’I-tésé (Institut de Technico-Economie des Systèmes Energétiques) au CEA suivent l’affaire avec intérêt.

——————————————————————————–

Ensuite il y a ASTRID, le projet pour un démonstrateur de Réacteur à Neutrons Rapides au sodium (RNR-Na) développé par le CEA. Cette filière a l’avantage de présenter beaucoup de valeur : utilisation du stock français d’Uranium appauvri, fermeture du cycle de combustible, surgénération … avec les RNR sodium, l’énergie nucléaire serait assurée pendant des millénaires !

ASTRID

Dans l’avant-projet en cours, mené par un consortium d’entreprises françaises et internationales avec environ 600 personnes, il y a des discussions avec l’Institut de radioprotection et de sûreté nucléaire (IRSN), mais pas encore d’engagement formel avec l’Autorité de Sûreté Nucléaire (ASN). Cet avant-projet doit déboucher en 2019 sur une décision par les tutelles du CEA d’engager … ou non … le développement d’ASTRID.

Mais le problème des RNR sodium, c’est qu’ils sont chers.

Certes, la valeur offerte par cette filière est séduisante. Certes, la France maîtrise la technologie, ayant construit les réacteurs Rapsodie, Phénix et Superphénix, et elle a un grand retour d’expérience. Mais utiliser un caloporteur sodium avec un combustible solide, même si le danger de la pression est éliminé, présente un danger de réactivité chimique. Les inconvénients de ce concept sont identifiés et il est possible d’y remédier, mais les études économiques de l’I-tésé et d’autres sont claires : le principal enjeu de cette technologie est son coût.

Enjeux ASTRID

——————————————————————————–

Enfin, le concept de réacteur à sels fondus MSFR développé par le CNRS, qui se décline désormais en deux versions – un grand réacteur d’un Gigawatt, et un petit réacteur modulaire d’une puissance entre 100 et 300 Mégawatts. Les avantages de sûreté intrinsèques d’un combustible liquide avec des sels fondus chimiquement stables sont démontrés par les études de la petite équipe du CNRS, et apportent à la fois de la valeur et la possibilité d’une rupture dans le coût de l’énergie nucléaire.

MSFR

Il est déjà appréciable que la SFEN ait accepté, pour la première fois, d’inclure une présentation sur cette technologie dans une journée technique. Le sujet est désormais incontournable dans toute discussion de la place et évolution de l’énergie nucléaire dans le futur, avec un intérêt international grandissant et le foisonnement d’entreprises start-up.

Pour les réacteurs à sels fondus, le temps est-il vraiment un problème ?

Quand le CEA parle des réacteurs à sels fondus, on pourrait conclure que les développements ne sont pas pour demain :

  • C’est un concept très innovant
  • Aucune construction d’un réacteur même prototype n’est actuellement lancée
  • Demanderait un processus de certification qui ne serait pas simple
  • Un certain nombre de difficultés techniques à résoudre en particulier dans le domaine de la chimie
  • Par contre c’est intéressant comme concept

Mais le CEA n’est pas un spécialiste dans ce domaine, ayant abandonné leur travail sur la technologie en 1983 en faveur des RNR sodium. Malheureusement, les économistes de l’I-tésé n’ont jamais chiffré un réacteur à sels fondus.

Les spécialistes dans d’autres pays disent que la technologie peut être déployée dans les années 2020, avec des architectures simplifiées par rapport au concept MSFR français. Le 7 novembre, l’Académie des Sciences de Chine et la province du Gansu ont signé un accord de coopération nucléaire pour un projet de réacteur à sels fondus à base de thorium, et visent un premier prototype de 2 Mégawatts en 2020.

Signature.jpg

En France, la communauté politique se pose actuellement de sérieuses questions sur le nucléaire. Est-ce une énergie de transition ou une énergie du futur ?

Si les réacteurs à sels fondus peuvent répondre aux attentes des clients de l’énergie nucléaire en termes de valeur, de coût et de temps, il serait temps d’y consacrer beaucoup plus de ressources.

 

Publicités

Un avis positif

Terrestrial Energy a reçu hier l’avis de la Commission canadienne de sûreté nucléaire (CCSN) que la première phase de l’examen de la conception de fournisseur pour le réacteur intégral à sels fondus (IMSR) a été terminée avec succès. C’est le premier avis réglementaire d’une autorité de sûreté nucléaire occidentale sur la conception d’une centrale électrique commerciale avancée.

Le directeur général de Terrestrial Energy, Simon Irish, a déclaré: « L’achèvement de la phase 1 de l’examen de la conception de fournisseur – le premier réacteur avancé à le faire – est une réalisation historique. L’entreprise se positionne en précurseur dans un secteur technologique en croissance rapide. La centrale nucléaire IMSR est une technologie énergétique transformatrice qui prend un pas de plus vers l’objectif de faire une contribution majeure à la demande mondiale croissante d’énergie à faible coût, propre et fiable. »

 

CCSN doc

La commercialisation d’une centrale nucléaire avancée telle que l’IMSR implique d’anticiper une série d’activités pour soutenir le déploiement, notamment l’engagement réglementaire et industriel, la sélection du site et le soutien du gouvernement. Terrestrial Energy a fait de grands progrès dans ces domaines importants:

«Les agences internationales de l’énergie reconnaissent que les énergies renouvelables intermittentes telles que l’éolien et le solaire ne peuvent pas répondre à toutes les exigences d’un système mondial d’énergie propre et conviennent que l’énergie nucléaire jouera un rôle crucial dans la satisfaction de nos futurs besoins énergétiques. Les réacteurs avancés offrent un ensemble de technologies nucléaires nouvelles et transformatrices avec zéro émissions, une application industrielle beaucoup plus grande, et qui rendent les centrales nucléaires plus économiques et plus faciles à financer.»

 

Source : communiqué de presse

Image d’une centrale IMSR : Terrestrial Energy

Un tabouret à trois pieds

Toute évolution technologique est précédée par un changement philosophique. C’est quand on arrive à penser différemment, quand on challenge sa culture, ses croyances et valeurs, qu’on peut repartir sur une voie différente.

Vu de l’extérieur, dans la culture de ceux qui soutiennent la fission nucléaire, il semble y avoir quelques croyances curieuses :

  • Le nucléaire est spécial, différent.
  • Les règles normales du marché ne s’appliquent pas au nucléaire.
  • On utilise le nucléaire uniquement pour produire de l’électricité.
  • Le nucléaire est une affaire d’état, de gouvernements
  • La physique est plus importante que la chimie.
  • La technologie est plus importante que les humains.
  • La valeur est plus importante que le coût et le temps.

Commençons par regarder la dernière sur la liste.

Dans le transfert de technologie, entre l’émergence d’une idée et sa commercialisation, différentes voies sont imaginées, explorées et évaluées selon trois critères : la valeur, le coût et le temps. Comme un tabouret à trois pieds, les idées de produits et services avec une proposition équilibrée entre ces critères sont attractives pour les investisseurs, les clients et le public, pour le développement d’un marché.

Tabouret 3 pieds

La découverte de la fission nucléaire a ouvert une nouvelle proposition de valeur pour l’humanité dans la production d’énergie : à masse égale, elle produit environ un million de fois plus d’énergie que la combustion. Et elle peut produire ces quantités massives d’énergie, de façon fiable et pilotable, sans émettre dans l’environnement des polluants comme le dioxyde de carbone. Très concentrée sur la maîtrise scientifique et industrielle de cette proposition de valeur, la communauté nucléaire a développé une culture où le coût et le temps sont des inconvénients à traiter plus tard.

Au début, cette stratégie a bien fonctionné. Même si une machine capable d’entretenir une réaction en chaîne était plus chère et plus longue à concevoir et construire qu’une centrale électrique à charbon ou à gaz, la valeur et les économies d’échelle offertes par des réacteurs de plus en plus puissants couvraient largement les écarts de coût et de temps. Le nucléaire était capable de tenir ses promesses et attirer des grands investissements.

Mais le marché de l’énergie a changé. L’industrie fossile, avec peu de propositions pour augmenter sa valeur, s’est concentrée sur la réduction de ses coûts – avec par exemple le développement de la fracturation hydraulique pour extraire du gaz naturel. Un lobby intense a attaqué tous les aspects de l’énergie nucléaire : réglementation, image du public, délais de construction, sécurité, peur de la radioactivité… La férocité et la constance de ces attaques sont impressionnantes, mais au lieu de se défendre contre la dégradation de ses performances en coût et en temps, la communauté nucléaire a répondu en proposant toujours plus de valeur : plus de puissance, plus de sûreté, une meilleure gestion du cycle de combustible, moins de risque, maîtrise de la fiabilité… Au point où la complexité de la technologie et des projets est telle que le bon équilibre entre valeur, coût et temps a été perdu, et l’offre de l’industrie pour la construction de nouvelles centrales nucléaires n’est plus en mesure de tenir ses promesses :

Tabouret bancal

Dans la lutte contre le réchauffement climatique, le monde a besoin de l’énergie de la fission nucléaire. Mais laquelle ? Il y a des dizaines de concepts possibles pour une centrale nucléaire, chacun avec ses avantages et inconvénients.

Le marché veut accéder à la valeur de l’énergie nucléaire avec moins de coût, et plus vite. La survie de l’énergie nucléaire dépendra de la capacité de la communauté de personnes qui se soucient de sa proposition de valeur à changer leurs croyances dans l’évaluation des nouveaux concepts.

On commence à voir ce changement de paradigme dans les entreprises de nucléaire avancé, qui ont compris l’importance primordiale du temps. La recherche d’innovations modulaires est une tentative d’en finir avec l’idée qu’il faut dix ans pour construire une centrale nucléaire. Aussi, certains concepts avec un potentiel important de réduction de coût, comme les réacteurs à sels fondus, n’ont pas encore été déployés à une échelle industrielle, et il est essentiel de présenter aux investisseurs un chemin vers la commercialisation crédible, rapide et avec le moins de risque possible. Pour éviter de longs programmes de recherche, il faut être prêt à utiliser des composants, des procédés et des matériaux déjà éprouvés, donc de faire des compromis difficiles sur la proposition de valeur, et parfois sur le coût.

Dans une conférence à Paris le 28 septembre 2017, le président de la Société Nucléaire Américaine (ANS) Robert Coward a dit que le but pour le nucléaire avancé était d’offrir « la moitié du coût, deux fois plus vite ». Si la communauté nucléaire peut changer ses croyances et sa façon de penser, si elle peut mettre toutes ses forces derrière des concepts équilibrés en termes de valeur, coût et temps, le marché réserve un avenir brillant pour cette énergie, pour l’environnement et pour l’humanité.

UK flag Cliquez ici pour la version anglaise de cet article.

Illustration : Alexia Laurie (compte Instagram – drawings_by_giraffs)

Combien coûteront les centrales nucléaires avancées ?

L’Energy Innovation Reform Project (EIRP), une organisation américaine à but non lucrative, a publié le 25 juillet 2017 un rapport préparé par l’Energy Options Network (EON) qui donne une première réponse à cette question épineuse.Rapport EON

Vous trouverez ici une traduction française de la synthèse de ce rapport.

Un modèle économique dérivé de celui développé par le Forum International Génération IV a été utilisé pour comparer les technologies de 8 entreprises :

EON participants

 

…en termes de leurs coûts de capital, coûts d’exploitation et coûts moyens actualisés de production d’électricité :

Tableau 2.jpg

Figure 1. Coûts de capital pour toutes les entreprises participantes

Figure 1

Figure 2. Coûts d’exploitation pour toutes les entreprises participantes

Figure 2

Figure 3. Coût moyen actualisé d’électricité pour toutes les entreprises participantes

Figure 3

Voici quelques phrases particulièrement intéressantes, extraites du rapport :

« les estimations de coûts de certaines entreprises de réacteurs avancées – si elles sont précises – suggèrent que ces technologies pourraient révolutionner la façon dont nous pensons au coût, à la disponibilité et aux conséquences environnementales de la production d’énergie »

« les entreprises de nucléaire avancé projettent des cibles de coûts qui, si elles sont atteintes, seraient près de la moitié du coût des centrales nucléaires conventionnelles »

« Ce constat a d’importantes implications stratégiques pour l’industrie et le pays. »

« Aux États-Unis, ces technologies pourraient être la solution définitive pour les problèmes économiques de l’énergie nucléaire sur les marchés de libre concurrence. À ces niveaux de coûts, le nucléaire serait effectivement compétitif avec toute autre option pour la production d’électricité. Au même temps, cela pourrait permettre une expansion significative de l’empreinte nucléaire dans les régions du monde qui ont le plus besoin d’énergie propre, et dont les moyens manquent pour la payer aux prix élevés. »

« Les stratégies communes de réduction des coûts comprennent les éléments suivants :

  • Des conceptions de centrales simplifiées et standardisées
  • Intégration de fabrication à l’usine et au chantier naval
  • Modularisation
  • Réduction de besoins en matériaux
  • Réduction de périmètre pour les entreprises d’ingénierie, d’approvisionnement et de construction
  • Temps de construction plus court
  • Densité de puissance augmentée
  • Efficacité augmentée »

« Naturellement, il y a des limites intrinsèques à un exercice de calcul des coûts pour de tels concepts à des stades précoces, et il existe plusieurs raisons pour lesquelles les coûts finaux pourraient s’écarter de ces estimations rapportées. Ces estimations ne devraient pas être considérées comme définitives; Plutôt, ils reflètent au mieux les estimations actuelles. « 

« La compréhension du potentiel économique de cette industrie sera importante tant pour les investisseurs que pour les décideurs. »

« il est important de réfuter les idées fausses sur les coûts »

Une rupture numérique ?

Hier, la Société Française d’Énergie Nucléaire a tenu sa convention annuelle, sur le thème « Le nucléaire accélère sa transformation numérique ».

Convention SFEN 2017

Image : SFEN (via Twitter)

Dans son introduction, le président de la SFEN Christophe Béhar a rappelé que le numérique n’est pas une fin en soi, mais un levier puissant qui permettra à la filière nucléaire d’aller plus vite, de manière intégrée, et de revoir ses processus.

Xavier Ursat, Directeur Exécutif d’EDF en charge de la Direction Ingénierie et Projets Nouveau Nucléaire, considère que le nucléaire a « pris du retard » par rapport aux autres industries comme l’automobile ou l’aéronautique. Il admet que le nucléaire est aujourd’hui questionné sur sa compétitivité, sur sa capacité à tenir les coûts et les délais : « L’industrie continuera à réussir si elle tient ses promesses. »

François Gauché, Directeur de l’Énergie Nucléaire au CEA, est revenu sur l’histoire du développement des processus numériques depuis 1948, sur les outils de simulation et de calcul tels que les méthodes Monte-Carlo d’analyse neutronique. L’augmentation de la puissance numérique permet de progresser dans la finesse des calculs.

Bernard Fontana, Chief Executive Officer d’AREVA NP a insisté sur la nécessité d’améliorer le coût d’exploitation de 30% aux Etats-Unis d’ici 2020, pour éviter la fermeture de centrales face à la concurrence du gaz de schiste.

Est-ce raisonnable de compter sur les technologies numériques pour réduire autant le coût du nucléaire ? Le besoin de production d’une énergie décarbonée à faible coût est plus pressant que jamais, et les enjeux sont de taille. Face à la situation critique dans laquelle elle se trouve, il faut que l’industrie fasse preuve d’un peu plus d’imagination.

La notion de technologie de rupture, une innovation qui porte sur un produit ou un service et qui finit par remplacer une technologie dominante sur un marché, a été introduite par Clayton M. Christensen dans son livre « Le dilemme de l’innovateur : quand les nouvelles technologies font disparaître les grandes entreprises« , publié en 1997. Ce livre décrit comment les industries établies, des gros paquebots très focalisés sur les besoins de leurs parties prenantes (clients, actionnaires, employés…), arrivent très rarement à changer de cap.

Par opposition aux technologies de rupture, les technologies de continuité ou d’amélioration continue procèdent par améliorations et incréments graduels successifs des performances de la technologie actuelle. Investir dans le numérique pour améliorer des processus dans la technologie des réacteurs à eau pressurisée, comme la numérisation de documents ou la gestion du cycle de vie des installations, tombe dans cette catégorie.

Il y a de solides raisons de penser que changer le combustible nucléaire d’un solide à un liquide à base de sels fondus pourra être une technologie de rupture. Nous savons que :

  • la capacité des sels fondus à confiner chimiquement des produits de fission
  • l’exploitation à pression atmosphérique
  • le fort mécanisme de contre-réaction d’un combustible liquide
  • la stabilité chimique des sels
  • la haute température de fonctionnement
  • le meilleur taux de combustion de la matière fissile
  • les nombreuses possibilités d’architecture et de modularité
  • la capacité de suivi de charge rapide
  • (…etc…)
…sont autant de facteurs qui devraient permettre de baisser le coût en capital et le coût moyen actualisé pour la production d’énergie d’une centrale nucléaire équipée de cette technologie. Le numérique est également un levier puissant dans ce domaine, pour démontrer la faisabilité de nouveaux concepts :
Transients MSFR

1. Modélisation par couplage neutronique / thermo-hydraulique d’effets transitoires dans un réacteur MSFR

Tube SSR v2

2. Simulation ANSYS / Fluent du flux laminaire de convection de sels fondus dans le tube de combustible d’un réacteur à sels stables (diamètre du tube agrandi sur l’image)

Turbulences TU Delft

3. Modélisation de vortex Taylor dans un milieu à sels fondus

Comment réagir face à une technologie de rupture comme la fission liquide ? Christensen suggère que la seule stratégie de survie pour des grandes entreprises dans cette situation est de créer une filiale start-up, indépendante, agile, avec des faibles coûts de structure, qui peut prendre des risques.

En 1958 Framatome était une start-up, qui a rassemblé la propriété intellectuelle des réacteurs à eau pressurisée de Westinghouse (désormais en faillite) et l’excellence de l’industrie française dans la fabrication de récipients sous pression. Elle a grandi pour devenir l’énorme entreprise multinationale que nous connaissons aujourd’hui sous le nom AREVA.

Nous sommes à 23 jours du premier tour de l’élection présidentielle. Dans le nouveau quinquennat, la France a tous les atouts pour renouer avec cet esprit de start-up et utiliser les leviers du numérique pour engager une innovation de rupture dans le nucléaire. Lire la suite