Valeur vs Coût

La vie est pleine d’arbitrages. Que le choix soit majeur comme où habiter, ou mineur comme l’achat d’un produit au supermarché, nous pesons constamment la valeur de nos décisions contre leur coût.

La France a décidé dans les années 1970 de produire une grande partie de son électricité à partir d’énergie nucléaire. En 2015, 58 réacteurs à eau pressurisée dits de « génération 2 » ont produit 76,3% de son électricité. Même si un réacteur nucléaire est une machine très chère, l’énergie nucléaire a beaucoup de valeur – elle permet de produire de vastes quantités d’énergie en sécurité, de façon fiable 24h/24h, sans envoyer dans l’atmosphère du CO2 et d’autres polluants.

parc-nucleaire-francais

Pour mesurer subjectivement la valeur de l’énergie nucléaire, la quantité d’énergie produite est la première considération, mais les technologies qui permettent de gagner en sécurité, fiabilité, propreté et durabilité apportent aussi de la valeur.

Imaginons un graphique de valeur contre coût.

  • En rouge la partie avec faible valeur et coût élevé
  • En vert la partie avec valeur élevée et coût faible.

Plaçons la technologie actuelle des réacteurs nucléaires de génération 2 au milieu de ce graphique :

valeur-vs-cout-5

A partir de cet état des lieux, différentes options sont disponibles.

epr

EPR

On peut par exemple aller vers la technologie de génération 3 (ou 3+) comme le réacteur EPR actuellement en construction à Flamanville.

Cette technologie a de nombreux avantages en termes de sécurité par rapport à la génération 2, avec l’ajout de nouveaux systèmes. Un réacteur EPR est également plus puissant, avec une capacité de 1 650 MWe. La technologie a donc plus de valeur que la génération 2.

Mais la génération 3 est bien plus chère que la génération 2. Le planning du projet ayant été repoussé plusieurs fois, l’estimation pour le coût du réacteur Flamanville 3 est actuellement 10,5 milliards d’euros (soit 6,36 €/W).

astrid

ASTRID

Sinon, il y a l’option de la génération 4, où la France développe le projet ASTRID, qui a pour objectif de relancer la filière des réacteurs à neutrons rapides au sodium, suite aux réacteurs expérimentaux Rapsodie, Phénix et Superphénix. ASTRID est réputé être aussi sûr que les réacteurs de génération 3+, mais apporte de la valeur en fermant le cycle nucléaire pour apporter une vraie réponse au problème de la durabilité.

Dans les mots de monsieur Nicolas Devictor, chef du programme ASTRID au CEA :

« En France, toutes les parties sont d’accord pour dire qu’un réacteur à neutrons rapides refroidi au sodium sera toujours plus cher qu’un réacteur à eau pressurisée. Toujours. »

« Il y a un service par contre qui n’est pas le même. Un réacteur à neutrons rapides – c’est un service sur le cycle, sur la gestion des matières. C’est de l’indépendance énergétique en partie aussi dont on parle, parce qu’en France on a des stocks d’uranium importants. On a un stock de Plutonium significatif aussi. »

Donc ASTRID, comme la génération 3, c’est plus de valeur pour plus de coût.

Une autre option est disponible – celle des petits réacteurs modulaires.

prm

Petits réacteurs modulaires

Assemblés en usine et livrés à la centrale par chemin de fer ou camion, leur petite taille permet une réduction importante du coût, et un financement plus facile.

Mais avec une puissance typiquement entre 50MWe et 300MWe, il faut construire plusieurs réacteurs pour produire la même quantité d’électricité qu’un réacteur de génération 2. Donc cette technologie présente moins de coût pour moins de valeur.

Toutes ces options technologiques utilisent un combustible à l’état solide. Plaçons les sur notre graphique de valeur vs coût :

valeur-vs-cout-6

Toutes les technologies ont un seuil de coût minimum. Quand on choisit le concept de la technologie, on choisit aussi son seuil de coût. Le seuil de la fission solide empêche l’industrie nucléaire actuelle de quitter la zone jaune.

La vraie innovation, ce serait une technologie qui nous rapproche du smiley vert – plus de valeur pour moins de coût.

Et la fission liquide peut faire cela. Les technologies en développement de réacteurs à sels fondus ont un coût réduit à cause de leur sécurité intrinsèque.

valeur-vs-cout-3

De loin le plus grand avantage vient de la chimie des sels fondus. Quand les produits de fission sont créés dans un liquide ionique, ils sont enfermés dans ce liquide qui est chimiquement très stable. Les liaisons fortes entre les atomes les empêchent de sortir du liquide, donc le premier niveau de confinement est assuré par la chimie. On agit directement pour réduire le danger du système de réacteur.

Les sels qu’on utilise sont liquides jusqu’à des températures très élevées, donc le système fonctionne à pression atmosphérique. Tous les problèmes de plomberie qui sont associés avec une opération à pression élevée sont éliminés.

Avec un combustible liquide on peut appliquer plein d’astuces dans la conception de l’architecture du réacteur, qui aident aussi à simplifier la conception et réduire le coût.

En construisant les réacteurs en usine, un peu comme pour les avions, on peut s’inscrire dans la démarche des petits réacteurs modulaires, ce qui apporte aussi un gain de coût. On n’assemble pas les airbus dans les aéroports.

Et dans la production d’énergie thermique, plus c’est chaud, plus c’est utile. Les réacteurs à sels fondus fonctionnent à une température beaucoup plus élevée que le nucléaire actuel – environ 700°C au lieu de 350°C, et ça ouvre la porte à d’autres marchés que l’électricité, comme la chaleur industrielle, la production de carburants de synthèse, ou le dessalement de l’eau de mer.

imsr

Avec une technologie comme le réacteur intégral à sels fondus  (IMSR) de Terrestrial Energy, on peut aller vers un coût très faible pour une technologie nucléaire intrinsèquement sûre.

Ces petits réacteurs modulaires auront des tailles entre 30MWe et 300MWe. Leur commercialisation est attendue dans les années 2020.

SSR.jpgLe réacteur à sels stables (SSR) de Moltex Energy permettrait, avec un coût similaire en Euros par Watt, de remplacer les REP de génération 2 et 3.

D’une puissance minimum de 300MWe, l’ajout de modules de 150MWe porte sa puissance maximum à 1200MWe.

MSFR 2.jpgEt les travaux du CNRS et de l’équipe européenne du projet SAMOFAR sur le réacteur MSFR nous montrent le chemin vers une filière à combustibles liquides tout aussi durable que la filière des réacteurs à neutrons rapides refroidis au sodium, mais avec une fraction du coût.

Le seuil technologique de la fission liquide est un nouveau paradigme pour l’énergie nucléaire.

valeur-vs-cout-8

Avant d’aller sur Mars, avant de faire la fusion nucléaire ou les voitures autonomes, faisons déjà ce changement fondamental pour remplacer les combustibles nucléaires solides par des liquides, pour faire la fission nucléaire correctement.

Une fission nucléaire intrinsèquement sûre, fiable, propre et durable, ramenée à un coût qui permettra de concurrencer les carburants fossiles, peut permettre à l’humanité de simultanément augmenter sa prospérité et réduire son impact sur l’environnement.

Plus de valeur et moins de coût. C’est ça le vrai progrès.

Animation IMSR

L’architecture du Réacteur Intégral à Sels Fondus, en développement chez Terrestrial Energy, a complètement changé le paradigme technique et économique de l’énergie nucléaire. Les réacteurs actuels, qui coûtent des milliards d’euros, doivent être rentabilisés sur une période la plus longue possible, ce qui est en conflit avec l’usure inévitable des composants du réacteur à cause du flux de neutrons de la réaction en chaîne.

Dans l’architecture de Terrestrial, tous les composants qui vont s’user font partie d’un unité cœur qui est scellé en usine, livré par camion et installé dans la centrale dans un silo sous le niveau de la terre. La sécurité intrinsèque du combustible liquide aux sels fondus a permis à Terrestrial de réduire le coût de cet unité à un point où il peut être rentable avec une durée de vie de juste sept ans. Du coup, les questions sur la durée de vie des matériaux, et sur la corrosion par les sels fondus sont maitrisées.

MSFR – suivi de charge et sûreté

Le réacteur nucléaire rapide à sels fondus, ou MSFR (pour Molten Salt Fast Reactor) est étudié par le CNRS au Laboratoire de Physique Subatomique & Cosmologie (LPSC) à Grenoble.

Le combustible liquide de ce réacteur apporte une simplicité de conception et une sécurité intrinsèque, avec une grande flexibilité d’opération qui serait très complémentaire avec les énergies renouvelables, pour les problèmes de suivi de charge.

Suivi de charge

Noël 2015 – Renouvelables : une production intermittente allant du simple au triple. Cliquez sur l’image pour visiter le site du Réseau de Transport d’Électricité, avec des données en temps réel.

Dans le domaine de la production d’électricité, on appelle suivi de charge la pratique qui consiste à faire varier la puissance de fonctionnement d’une centrale de façon à l’adapter aux variations de la demande. Plus on produit de l’électricité avec des sources renouvelables non dispatchables comme le solaire et l’éolien, plus les autres sources dispatchables doivent s’adapter rapidement pour suivre la charge globale des consommateurs.

Pour les centrales nucléaires actuelles, un changement de puissance trop rapide peut endommager les crayons de combustible solide. En fonction du type de réacteur le changement de régime est limité à 1% – 5% de la puissance maximale par minute.

Un réacteur à sels fondus n’a pas les mêmes limitations – son combustible est un liquide. Pour illustrer la capacité de suivi de charge du réacteur MSFR, l’équipe CNRS à Grenoble a realisé des calculs de couplage neutronique et thermohydraulique sur des segments d’1/16ème du cœur, chacun avec leur unité de pompe / échangeur.

Calcul neutronique et thermohydraulique

En effet, la performance neutronique du réacteur est impactée par les changements thermo-hydrauliques, et sa performance thermo-hydraulique est impactée par les changements neutroniques. Les calculs et simulations font partie de la soutenance de thèse d’Axel LAUREAU, présentée le 16 octobre 2015.

Une variation de puissance de 33% en une minute a été simulée. On demande au réacteur de passer d’une puissance de 2GW à 3GW en 60 secondes – ce sont les lignes rouges dans l’image ci-dessous.

Suivi de charge

Dans chaque illustration colorée en bas de l’image, on observe deux fois 1/16ème du cœur : à gauche la distribution de puissance produite dans le combustible liquide, et à droite la distribution de température.

Grâce à la propriété de contre-réaction forte du combustible liquide, le réacteur se comporte très bien et en toute sécurité lors de cette transition. Une réduction de puissance rapide de 3GW à 2GW en 60 secondes est également illustrée, par les lignes bleues.

Cette méthode de calcul permet d’aller plus loin et de simuler des scénarios accidentels, pour évaluer la sûreté du réacteur. Dans les vidéos suivantes un incident de sur-refroidissement et un incident d’insertion de réactivité sont illustrés. ATTENTION ! Les échelles de temps sont logarithmiques !

Dans cette simulation le réacteur est initialement dans un état stable avec une faible puissance de 0,1GW (100MW). L’incident simulé est un sur-refroidissement par le circuit intermédiaire, où la température du sel dans ce circuit est instantanément modifiée pour représenter une puissance extraite de 3GW – un événement peu probable considéré comme un cas enveloppe.

La marge à la criticité prompte est de -125pcm (=0.125%), elle représente la contribution des neutrons retardés à la réaction en chaine, et correspond à la réserve de réactivité insérable avant que les neutrons prompts ne pilotent seuls et abruptement la réaction en chaine. Pour éviter cette situation de sur-criticité prompte, on doit rester en-dessous de la ligne de 0 pcm.

Le sel combustible dans l’échangeur est refroidi. Il est transporté par la pompe et vers 0,5 secondes ce sel refroidi commence à rentrer dans le cœur du réacteur, ce qui augmente la réactivité. Vers 1,0 secondes, la puissance commence à monter, ce qui fait monter la température du sel. La dilatation du liquide contribue à réduire la réactivité, et cette contre-réaction est bien supérieure à l’effet du sur-refroidissement : après 1,5 secondes la réactivité atteint un pic avant de redescendre vers son état initial de -125 pcm. Après 3 secondes, la puissance commence à se stabiliser sur la puissance extraite de 3GW.

Conclusion : très bonne capacité du réacteur à compenser un incident de sur-refroidissement de 0,1 à 3GW.

Dans cette simulation le réacteur est initialement dans un état stable de production d’énergie, à sa puissance nominale de 3GW. L’incident simulé est une insertion de réactivité de 1000 pcm (1 pcm = 1 pour cent mille soit 1% ici) en 1 seconde – un événement peu probable considéré comme un cas enveloppe.

La marge à la criticité prompte est de -125pcm (=0.125%), elle représente la contribution des neutrons retardés à la réaction en chaine, et correspond à la réserve de réactivité insérable avant que les neutrons prompts ne pilotent seuls et abruptement la réaction en chaine. Pour éviter cette situation de sur-criticité prompte, on doit rester en-dessous de la ligne de 0 pcm.

Quand on commence à insérer de la réactivité, la puissance et donc la température commencent à monter. Mais comme le combustible est un liquide il se dilate, ce qui contribue à réduire la réactivité. Cette contre-réaction permet de compenser parfaitement l’insertion de réactivité. Après 0,1 secondes la réactivité atteint un pic avant de redescendre vers son état initial de -125 pcm.

Conclusion : très bonne capacité du réacteur à compenser une insertion rapide de réactivité.

 

Un nouveau rapport sur la fission liquide

Au Royaume-Uni, la société Energy Process Developments a publié un rapport avec le titre « Faisabilité de développement d’un réacteur à sels fondus prototype au Royaume-Uni« .

EPD

EPD a été créée en 2014 suite à l’annonce d’un financement de £100 000 du Technology Strategy Board, organisme stratégique du gouvernement britannique en matière d’innovation. Leur étude a été suivie par les universités d’Oxford et Cambridge, avec comme objectifs de :

  • Faire un examen complet de la technologie des réacteurs à sels fondus (RSF)
  • Identifier les développements récents dans ce domaine
  • Comparer les technologies offertes par 6 entreprises
  • Proposer la technologie la plus adaptée pour le développement d’un prototype de réacteur au Royaume-Uni

Technologies étudiées

Le rapport, publié en août 2015, est un document de 75 pages en anglais, disponible en format .pdf par simple clic sur ce lien. Chaque chapitre se termine par quelques lignes de synthèse, traduites en français ci-dessous :

Résumé

Les auteurs de ce rapport recommandent à tous les intéressés qu’ils devraient faire d’urgence les investissements nécessaires, ainsi qu’un engagement pour procéder avec un programme de réacteur à sels fondus, y compris un prototype de démonstration tel qu’identifié par cette étude.

1. Opportunités & aperçu de l’industrie

  • Le Royaume-Uni a un budget de R&D nucléaire inexistant par rapport aux autres grands pays.
  • Il existe une opportunité pour le Royaume-Uni d’avoir une part de £240 milliards dans un marché international du nucléaire de £1000 milliards d’ici 2030. Des RSF à combustible liquide peuvent être développés au Royaume-Uni pour alimenter ce marché.
  • Les RSF peuvent avoir le potentiel d’être plus économiques et sont plus sûrs que les technologies d’aujourd’hui. Les RSF peuvent traiter les stocks de déchets et de plutonium.
  • La prospérité, la consommation d’énergie, le gaz à effet de serre et la croissance démographique sont apparemment tous liés. Avec une source d’énergie propre et pas chère, ils peuvent tous être stabilisés.
  • Une action immédiate du gouvernement britannique peut lancer la technologie des RSF.

2. Concepts de RSF évalués par cette étude

  • La recherche et le développement mondiaux des RSF sont actuellement dirigés par la Chine. Ailleurs, de petites start-ups avec des nouveaux concepts innovateurs sont prometteuses.
  • Six propositions sont examinées pour leur aptitude en tant que prototype de démonstration au Royaume-Uni. Toutes sont considérées comme des propositions valables à ce stade de la conception.
  • Le réacteur à sels stables de Moltex Energy apporte simplicité et avantages pour le Royaume-Uni en particulier.

3. Contexte historique

  • Le réacteur à eau pressurisée a été développé pour le programme de la défense et a été repris pour la production d’électricité.
  • Le RSF en tant que concept a été démontré avec succès dans les années 1960. Il ne répondait pas aux exigences de la défense et a été arrêté.

4. Une introduction à la technologie des RSF à combustible liquide

  • L’énergie nucléaire a une densité énergétique beaucoup plus élevée que d’autres sources.
  • Le combustible des RSF est dissous dans un sel liquide, ce qui apporte de nombreux avantages.
  • Ils opèrent dans un spectre rapide ou thermique, avec un grand choix de cycles de combustible.

5. Avantages des RSF

  • Les RSF peuvent être conçus avec une sécurité passive complète et aucune possibilité pour une dispersion généralisée de substances radioactives.
  • Ils ont un taux élevé d’utilisation de combustible et produisent peu de déchets à vie longue.
  • Les coûts d’une installation peuvent être comparables aux combustibles fossiles.
  • Les RSF offrent plus d’avantages que les autres technologies existantes ou avancées.

6. Défis des RSF

  • La technologie des RSF n’a jamais été disponible dans le commerce.
  • L’approbation réglementaire sera un processus long et coûteux.
  • L’expérimentation sera nécessaire pour certains nouveaux concepts et applications de matériaux.
  • L’obtention de financement est difficile en raison du long engagement requis et le risque élevé de mettre en œuvre une technologie de rupture dans un environnement très réglementé.

7. Réglementation nucléaire

  • Aucune expérience n’existe pour l’homologation d’un prototype de réacteur ou d’un nouveau site.
  • La charge réglementaire pour une technologie innovante est de la responsabilité du vendeur.
  • La véritable innovation est sévèrement limitée par le processus actuel.

8. Sélection du site

  • Le Royaume-Uni n’a pas d’installations pour la démonstration de nouvelles technologies de réacteurs.
  • Le processus de développement et le calendrier seront grandement simplifiés si un site avec une licence existante peut être utilisé.
  • Des RSF qui brûlent du plutonium pourraient être bénéfiques pour l’Autorité Britannique de Démantèlement Nucléaire (NDA) qui possède certains sites appropriés.

Bien que des avantages sont trouvés dans l’ensemble des modèles de réacteurs étudiés, le rapport conclut que le Réacteur à Sels Stables, la conception proposée par Moltex Energy, est la meilleure option à poursuivre. Le Réacteur à Sels Stables est un réacteur à spectre rapide de type piscine, mais sa caractéristique unique par rapport aux autres conceptions est que le combustible est statique. Pour la plupart des réacteurs à sels fondus, le liquide hautement radioactif est pompé activement à travers un échangeur de chaleur tandis que dans la conception de Moltex Energy les sels fondus radioactifs (composés de combustible nucléaire usé mélangé avec du chlorure de sodium pour réduire son point de fusion) sont contenus dans des tubes métalliques, semblables aux crayons de combustible dans les réacteurs traditionnels. Le flux de sels fondus dans les tubes est créé entièrement par convection naturelle, sans pièces mobiles, éliminant la possibilité de défaillance des pompes. Le bassin de liquide de refroidissement contient un autre type de sels fondus ce qui donne au réacteur une sécurité intrinsèque car toute fuite de combustible radioactif est mélangée et diluée dans ce grand bain.

Réacteur à Sels Stables Moltex
Contrairement à tous les autres modèles de réacteurs à sels fondus, cette conception n’est pas un dérivé du réacteur expérimental à sels fondus développé au laboratoire national d’Oak Ridge (où les RSF ont été initialement développés dans les années 1960), mais plutôt une vraie conception du 21e siècle. Avec toute une série d’autres avantages, le Réacteur à Sels Stables est conçu de telle sorte que tous les composants peuvent être construits dans des segments et assemblés sur le site d’une centrale. Cette conception modulaire est beaucoup plus simple et moins chère que les réacteurs d’aujourd’hui, ce qui permet d’envisager un déploiement d’autant plus avantageux.

Le rapport conclut que ce réacteur conçu au Royaume-Uni, « en raison de sa relative simplicité et des obstacles techniques relativement faibles et peu nombreux, est la configuration la plus appropriée pour un développement immédiat à l’échelle prototype au Royaume-Uni ».

Une partie du texte de cet article provient de celui publié sur le site du Alvin Weinberg Foundation par Suzanna Hinson.

L’opportunité du siècle ?

 « Je détermine ce dont le monde a besoin, puis je cherche à l’inventer. »

– Thomas Edison

En 2015 le monde a besoin, plus que jamais, d’une source d’énergie qui est fiable, sûre, durable, propre et bon marché.

« Notre avenir énergétique est défini par une montagne. Cette montagne se crée et se construit devant nous, et va être construite sur les deux prochaines décennies, pour la prochaine génération.

[Cet avenir] est basé sur une demande croissante d’énergie primaire dans les économies non-OCDE. Cette demande d’énergie est construite par six milliards de personnes, qui désirent le mode de vie de la classe moyenne que nous avons aujourd’hui en Occident.

Si l’économie mondiale va fournir cette énergie pour répondre à ce désir, il faut énormément d’énergie propre. »

– Simon Irish, PDG de Terrestrial Energy

Terrestrial Energy est une entreprise privée canadienne avec plus de 30 personnes, qui cherche activement à inventer ce dont le monde a besoin, à travers la technologie des réacteurs nucléaires à sels fondus. Dans une présentation en avril 2015 son PDG Simon Irish a expliqué, du point de vue d’un financier, l’énorme opportunité économique offerte par cette technologie.

(vidéo sous-titrée en français, transcription ici)

« La fourniture d’énergie mondiale est probablement 5% du produit mondial brut, $3,500,000,000,000 par an.

La valeur des fonds propres des compagnies d’énergie d’aujourd’hui est de $5,000,000,000,000, qui est 7,6% de la capitalisation boursière du monde. La valeur d’entreprise de ces sociétés est encore plus. Il y a de gros enjeux au cours des deux prochaines décennies dans cette zone. »

« Si on pouvait conquérir [le marché de remplacement des centrales à charbon] d’une manière incontestée avec un petit réacteur modulaire, compétitif par rapport aux alternatives aux combustibles fossiles, ce serait une opportunité très, très importante. »

Le produit en développement chez Terrestrial Energy est nommé « Réacteur Intégral à Sels Fondus«  (en anglais: Integral Molten Salt Reactor, IMSR). C’est un petit réacteur modulaire qui a l’objectif d’être le plus simple et le moins cher possible, pour démocratiser l’énergie auprès d’une population la plus large possible, et ainsi lutter contre le réchauffement climatique et accroître la prospérité de l’humanité.

Illustration IMSR

L’opportunité économique que représente cette technologie est décrite en plus de détail sur le site internet de Terrestrial Energy. En mai 2015 il était indiqué sur ce site que « L’IMSR peut produire de l’énergie à un coût moyen actualisé de $0,04 / kWh », une phrase retirée depuis mais qui représente certainement l’ambition de l’entreprise.

Imaginons pour un instant un monde où l’électricité propre coûte $0,04 / kWh…

L’IMSR se décline en 3 tailles, pour conquérir différents segments du marché de l’énergie.

IMSR 80 300 600

  • L’IMSR80 génère 80 mégawatts de chaleur, ou 33 mégawatts d’électricité
  • L’IMSR300 génère 300 mégawatts de chaleur, ou 141 mégawatts d’électricité
  • L’IMSR600 génère 600 mégawatts de chaleur, ou 291 mégawatts d’électricité

La taille relativement petite de ces réacteurs permettrait de les construire en usine et les livrer préfabriqués sur le site d’une centrale nucléaire, en contraste avec les grands réacteurs proposés par l’industrie nucléaire traditionnelle, tel que l’EPR d’Areva (maintenant EDF…) avec ses 4500 mégawatts de chaleur et 1650 mégawatts électriques.

Mais les économies d’échelle offertes par une production en série des réacteurs sont éclipsées par l’opportunité présentée par le changement d’un combustible nucléaire solide à un combustible LIQUIDE. Dissoudre l’uranium ou le thorium dans un mélange de sels fondus permet de concevoir un système d’énergie qui fonctionne à pression atmosphérique, avec des substances qui sont chimiquement très stables. En effet, la chimie des sels fondus offre une première barrière de confinement efficace pour les produits de la réaction de fission. Et cette sécurité intrinsèque permet de concevoir un système bien moins cher.

Le coût de l’électricité nucléaire est largement dominé par le capital nécessaire à la construction d’une centrale. A l’opposé d’une centrale thermique, le combustible nucléaire représente une petite fraction du coût global de l’énergie produite. Et il y a une relation directe entre l’investissement de capital nécessaire pour construire un système d’énergie nucléaire et le profil de sécurité intrinsèque du système de réacteur.

CAPEX = ƒ (profil de sécurité intrinsèque du système de réacteur)

Un aspect intéressant de Terrestrial est une volonté de communiquer assez ouvertement sur leur technologie. L’entreprise utilise les médias sociaux (Facebook, Twitter, LinkedIn) et a écrit un article Wikipedia sur l’IMSR. Cet article est désormais traduit en français, sur Wikipédia.fr

Wiki IMSR

David Leblanc, président et directeur technique de Terrestrial Energy a parlé du développement de l’IMSR à la conférence TEAC7 sur l’énergie du thorium, en juin 2015 (voir cette video). Il présentera un nouvel aperçu au symposium de la World Nuclear Association, le 10 septembre 2015 à Londres.

En tant qu’entreprise privée, Terrestrial Energy ne communique pas sur le niveau d’investissement qu’ils ont obtenu. Mais regardons une sélection des personnes qu’ils ont nommées au sein de leur conseil d’administration, équipe de management et conseil consultatif international (cliquez sur les images pour plus d’information) :

Bodner Edwards Engel Hill Johnson MacDiarmid Merrifield Reinsch Rickman Whitman

Certaines de ces personnes ont occupé des postes aux plus haut niveaux des administrations, institutions et entreprises de l’Amérique du nord. Clairement, ils sont convaincus de la nécessité de poursuivre cette technologie activement. Les réacteurs à sels fondus de Terrestrial Energy et d’autres jeunes entreprises pourraient bien représenter l’opportunité du 21ème siècle.

Quel réacteur à sels fondus ?

La fission liquide présente tellement d’avantages que la question n’est pas si on devrait la développer, mais quel concept il faut retenir.

Quel RSF

Ca ressemble à une nouvelle industrie naissante, non ?

Produire de l’énergie nucléaire avec un combustible liquide, au lieu des technologies actuelles qui utilisent toutes des combustibles solides, nous permet d’envisager l’aube d’une nouvelle ère pour la fission nucléaire, avec une technologie de rupture plus sûre, moins chère, fiable, durable et propre – faisons la fusion du cœur AVANT de le mettre dans le réacteur !

Il est important de comprendre que la fission liquide est une famille de technologies, leur difference étant dans l’état de la matière de leur combustible. En modifiant des facteurs tels que choix et chimie des sels fondus, architecture, géométrie et taille du réacteur, vitesse des neutrons, traitement des déchets, refroidissement etc., il est possible, comme pour les combustibles solides, d’imaginer des dizaines de concepts différents.

Branches technologiques

Quelques exemples de branches technologiques de l’énergie nucléaire. La fission liquide est l’ensemble des branches vertes.

 Alors quelle branche verte faut-il développer ?

Grande question…

Dans la communauté internationale de la fission liquide, chaque personne ou groupe apporte une réponse un peu différente à cette question, en fonction de ses valeurs, sa compréhension des exigences et ses idées sur les solutions possibles.

Cependant, dans la façon de penser à ces systèmes d’énergie du futur, on distingue aujourd’hui deux grandes écoles, qu’on appelera ici l’école « Académique » et l’école « Start-up ».

L’école Académique est en grande partie issue des objectifs fixés pour les concepts développés dans le cadre du Forum International Génération 4 :

  • améliorer la sûreté nucléaire,
  • améliorer la résistance à la prolifération – en brûlant les stocks de plutonium,
  • minimiser les déchets – en recyclant et transmutant les actinides issus des réactions nucléaires,
  • optimiser l’utilisation des ressources naturelles,
  • diminuer les coûts de construction et d’exploitation des réacteurs.

Ce sont des objectifs pour satisfaire les clients de l’énergie, et plus largement pour refaire de l’énergie nucléaire une technologie socialement acceptable. Et dans ce domaine, la France peut se réjouir d’être un vrai spécialiste, avec le réacteur MSFR développé par le CNRS à Grenoble, qui a été sélectionné par le Forum GenIV en tant qu’hypothèse centrale pour le concept de réacteur à sels fondus au niveau international. La Commission Européenne a souligné l’importance de cet effort avec l’allocation au mois de février 2015 de plus de €3 millions pour approfondir les aspects de sûreté de ce concept, avec le programme SAMOFAR.

Albert Einstein a dit :

« Tout devrait être rendu aussi simple que possible,

mais pas plus simple. »

Un problème avec l’école Académique est justement que les objectifs sont un peu trop simples. Pour atteindre les objectifs, tout à fait louables, d’optimiser des facteurs tels que durabilité et déchets, il y a une tendance à orienter les choix technologiques sur des solutions qui n’existent pas encore et qui demandent un effort considerable de recherche et développement.

Ecole académique

Avec la technologie EPR en ligne médiane, où se situent les objectifs pour l’école « Académique » ?

La technologie nucléaire est difficile à financer – un développement sérieux de la fission liquide coûtera des centaines de millions d’euros (voire quelques milliards). Pour un investisseur, que ce soit un gouvernement ou une entreprise privée :

  • Effort de R&D important = Risque technologique
  • Risque technologique = délai de commercialisation & coût de développement importants

Risque, temps, coût. La minimisation de ces trois est l’objectif de tout investissseur. Un nouveau produit ou technologie obtient le financement nécessaire à son développement quand un équilibre est trouvé qui satisfait aux exigences de ses clients ET de ses investisseurs.

L’école « Start-up » de la fission liquide voit les choses différemment. Ici, la question est plutôt : Quel est le meilleur réacteur à sels fondus qu’on peut concevoir maintenant ? Avec :

  • Uniquement des technologies éprouvées et disponibles sur étagère
  • L’architecture et la conception la plus simple possible
  • Pas de nouveaux matériaux
  • Un cycle de combustible connu
  • Investissements chiffrés et maîtrisés
  • Production en série, modularité et fabrication des modules en usine
  • Plusieurs marchés cibles (chaleur industrielle, dessalement, hydrogène, carburants de synthèse…), pas uniquement l’électricité

La question étant posée différemment, la réponse est forcément différente aussi. Ce type de technologie serait moins performant en termes de durabilité et déchets (tout en restant bien supérieur à une technologie existante de réacteur à eau pressurisée comme un EPR), mais avec moins de risque technologique et une maîtrise des investissements serait bien plus intéressant pour un investisseur.

Ecole start-up

Alors, à quelle école faut-il donner raison ? Quelle approche doit recevoir le financement important qu’il faut injecter dans la fission liquide ?

La réponse est : toutes les deux. Elles sont interdépendantes et complémentaires.

  • Les nouvelles start-ups ont besoin du monde académique en tant que partenaire pour leur recherche, pour former leur personnel et pour construire et communiquer la vision long-terme.
  • Le monde académique a besoin des start-ups pour orienter les études économiques, et pour faire le retour d’expérience de la conception, construction, validation et opération des réacteurs.

La fission liquide doit sortir du laboratoire pour rivaliser et s’imposer au centre des marchés d’énergie – concurrencer en matière de coûts et de commodité avec le charbon et le gaz naturel. La planète ne peut pas attendre 30 ans avant sa commercialisation. Mais la fission liquide doit également montrer à un public sceptique de l’énergie nucléaire une voie vers une énergie réellement durable et propre, son acceptabilité sociale étant essentielle à son succès.

Ce n’est pas chose facile que de démarrer une nouvelle voie dans la technologie de la fission nucléaire. Cela représente un changement de paradigme, un investissement important, un grand col à traverser… Mais dans la vallée de l’autre côté de ce col, l’herbe est bien plus verte.

新年快乐, équipe TMSR !

C’est le Nouvel An en Chine, et l’année de la chèvre pourrait être historique pour l’équipe à Shanghai qui travaille pour développer le premier réacteur à sels fondus du monde à fonctionner depuis 1969.

Energie du Thorium a écrit à Xu Hongjie, le directeur du programme TMSR* au SINAP**, pour poser des questions sur l’avancement.

TMSR    Xu Hongjie

Lettre ouverte à Xu Hongjie, directeur du programme TMSR, SINAP

Cher Dr. Xu,

Ce courriel est pour souhaiter une très bonne année à vous et à toute l’équipe de TMSR.

Partout dans le monde, dans la communauté grandissante des réacteurs à sel fondus, il y a beaucoup de questions au sujet de ce programme passionnant :

  • Quand le premier réacteur (TMSR-SF1) est-il prévu d’atteindre la criticité ?
  • Comment progresse la construction du site du réacteur à Dafeng ?
  • Le réacteur TMSR-SF1 sera-t-il lié à un réacteur chimique pour la production de méthanol ?
  • Combien de personnes travaillent actuellement sur le programme ?
  • Quel est le budget global du programme ?
  • Y a-t-il toujours un soutien politique fort pour le programme, après la démission de Jiang Mianheng ?
  • La conception pour le premier réacteur à combustible liquide est-elle terminée ?
  • Quelle est la visibilité pour le coût du carburant, des capitaux et de l’énergie produite pour les technologies TMSR (combustibles solides et liquides) ?
  • Comment l’équipe est-elle organisée de telle sorte que les physiciens travaillent efficacement avec les chimistes ?
  • Dans le cadre du partenariat avec CNNC, quel sera le premier réacteur à être construit par la CNNC, et quand ?
  • SINAP a un partenariat avec le laboratoire ANSTO en Australie. Y a-t-il d’autres partenariats pour la R&D sur TMSR en dehors de la Chine ?

En 2015, avez-vous un plan de communication ? Comptez vous présenter les progrès de TMSR à la conférence ThEC15 à Mumbai, Inde en Octobre, ou à toute autre conférence en 2015 ?

Est-il prévu que TMSR soit présenté par la Chine comme une solution au changement climatique lors de la conférence climatique COP 21 à Paris en Décembre 2015 ?

Espérons que l’année de la chèvre apportera de grands progrès dans la technologie des réacteurs à sels fondus. Bonne chance à vous et à toute votre équipe.

Meilleures salutations,

John Laurie
http://energieduthorium.fr

En attendant la réponse de Dr. Xu, sa présentation à la conférence ThEC13 au CERN à Genève en 2013 donne des informations intéressantes pour ceux qui voudraient connaître plus sur ce programme.

UK flag Le courriel, tel qu’il a été envoyé en anglais, est ici.

(新年快乐 = Bonne année)

* TMSR = Thorium Molten Salt Reactor –> Réacteur à Sels Fondus au Thorium

** SINAP = Shanghai Institute of Applied Physics –> Institut de physique appliquée de Shanghai

Photo de Xu Hongjie : http://www.icri2014.eu/speakers/xu-hongjie