Orano sélectionné par Terrestrial Energy

Terrestrial Energy a conclu un accord avec Orano, leader mondial du cycle du combustible nucléaire, dans le cadre de son programme d’approvisionnement en combustible pour l’exploitation du Réacteur Intégral à Sels Fondus (Integral Molten Salt Reactor, IMSR), une centrale nucléaire de génération IV.

Le large éventail de services de l’accord comprend l’enrichissement de l’uranium, la conversion chimique en combustible IMSR, sa production, son transport, son emballage et sa logistique. Ce champ d’application couvre l’analyse de la production et de la fourniture commerciales à grande échelle de combustible IMSR et s’applique aux principaux marchés actuels pour le déploiement de centrales IMSR, notamment le Canada, les États-Unis, le Royaume-Uni et le Japon.

Cet accord s’inscrit dans la stratégie d’approvisionnement multiple de Terrestrial Energy pour l’approvisionnement en combustible IMSR et reflète la volonté d’Orano de soutenir la commercialisation des réacteurs de nouvelle génération avec sa large gamme de services de combustible. La relation entre les sociétés est non exclusive et permet aux deux parties de poursuivre d’autres opportunités commerciales similaires dans l’industrie nucléaire.

Depuis plus de 50 ans, le Groupe Orano fournit à l’industrie nucléaire mondiale des produits et des services d’expertise sur l’ensemble du cycle du combustible nucléaire. Ces services comprennent l’enrichissement de l’uranium ainsi que la conversion, la production, l’emballage et le transport du combustible. La sécurité de l’approvisionnement en combustible commercial tout au long de la durée de vie de la centrale est soutenue par les installations de conversion et d’enrichissement modernes et de pointe d’Orano, qui répondent aux normes de sûreté, de qualité et de sécurité les plus élevées tout en réduisant l’empreinte environnementale.

« Cet accord avec Terrestrial Energy applique la portée mondiale de l’approvisionnement en combustible et l’expérience d’Orano pour se concentrer sur l’alimentation de la prochaine génération d’énergie nucléaire innovante et propre au Canada », a déclaré Amir Vexler, PDG d’Orano USA. « Notre équipe nord-américaine est fière de jouer un rôle essentiel dans l’établissement de cette connexion et la réalisation de l’accord. »

« Les exigences des exploitants des centrales pour l’approvisionnement en combustible s’étendent au-delà de l’enrichissement de l’uranium à une gamme de services essentiels qui, ensemble, assurent un approvisionnement sécurisé en combustible du réacteur jusqu’à la porte de la centrale », a déclaré Simon Irish, PDG de Terrestrial Energy. « Le champ d’application de notre accord couvre toute la gamme de l’enrichissement, la production, avec ses éléments de transport, y compris l’emballage et la logistique, pour un approvisionnement commercial complet. Cette gamme de services est essentielle pour l’exploitation des premières centrales IMSR dès 2028. »

Le combustible IMSR utilise un dosage standard d’uranium faiblement enrichi (UFE), qui est devenu la norme de combustible commercial au cours de nombreuses décennies d’exploitation des centrales électriques. À l’exception des centrales CANDU (qui utilisent de l’uranium non enrichi), les centrales nucléaires commerciales du monde entier utilisent aujourd’hui l’UFE à dosage standard.

Terrestrial Energy a présenté le 14 septembre sa nouvelle centrale électrique IMSR400, qui se compose de réacteurs et de générateurs jumeaux pour produire 390 MW d’électricité propre sur un site. L’IMSR400 est l’une des trois conceptions de centrales électriques à petit réacteur modulaire (SMR) à l’étude pour un déploiement à la centrale nucléaire de Darlington d’Ontario Power Generation. C’est l’un des deux candidats technologiques de génération IV et le seul candidat technologique canadien. L’entreprise Terrestrial Energy à Oakville représente le plus grand projet de développement technologique de centrale électrique SMR au Canada.

Un avis positif

Terrestrial Energy a reçu hier l’avis de la Commission canadienne de sûreté nucléaire (CCSN) que la première phase de l’examen de la conception de fournisseur pour le réacteur intégral à sels fondus (IMSR) a été terminée avec succès. C’est le premier avis réglementaire d’une autorité de sûreté nucléaire occidentale sur la conception d’une centrale électrique commerciale avancée.

Le directeur général de Terrestrial Energy, Simon Irish, a déclaré: « L’achèvement de la phase 1 de l’examen de la conception de fournisseur – le premier réacteur avancé à le faire – est une réalisation historique. L’entreprise se positionne en précurseur dans un secteur technologique en croissance rapide. La centrale nucléaire IMSR est une technologie énergétique transformatrice qui prend un pas de plus vers l’objectif de faire une contribution majeure à la demande mondiale croissante d’énergie à faible coût, propre et fiable. »

 

CCSN doc

La commercialisation d’une centrale nucléaire avancée telle que l’IMSR implique d’anticiper une série d’activités pour soutenir le déploiement, notamment l’engagement réglementaire et industriel, la sélection du site et le soutien du gouvernement. Terrestrial Energy a fait de grands progrès dans ces domaines importants:

«Les agences internationales de l’énergie reconnaissent que les énergies renouvelables intermittentes telles que l’éolien et le solaire ne peuvent pas répondre à toutes les exigences d’un système mondial d’énergie propre et conviennent que l’énergie nucléaire jouera un rôle crucial dans la satisfaction de nos futurs besoins énergétiques. Les réacteurs avancés offrent un ensemble de technologies nucléaires nouvelles et transformatrices avec zéro émissions, une application industrielle beaucoup plus grande, et qui rendent les centrales nucléaires plus économiques et plus faciles à financer.»

 

Source : communiqué de presse

Image d’une centrale IMSR : Terrestrial Energy

Des millions de dollars pour la fission liquide

Bill Gates ne perd pas son temps. Le 30 novembre 2015 il a lancé à la conference COP21 à Paris la Breakthrough Energy Coalition, un groupe de 28 milliardaires qui se sont réunis pour investir dans l’énergie propre.

Membres BEC 2

Et le même jour il était aux côtés de 20 chefs d’état pour lancer Mission Innovation. Ces 20 pays vont doubler leurs budgets de recherche dans les énergies propres d’ici 5 ans.

Mission Innovation

Avec cette nouvelle organisation, quelle technologie d’énergie propre révolutionnaire est en première ligne en Amérique du Nord pour recevoir des fonds privés et publics?

Le Réacteur à Sels Fondus.

Terrapower, l’entreprise start-up soutenue par Bill Gates, a jusqu’alors été focalisée sur le développement d’un Réacteur à onde progressive, avec refroidissement au sodium. Sur leur site internet il est indiqué que « TerraPower prévoit que le réacteur à ondes progressives (TWR) puisse être compétitif en coût avec les réacteurs à eau légère existants« . Mais Gates sait très bien que ce n’est pas suffisant. Pour faire une vraie rupture, une nouvelle technologie nucléaire doit être moins chère que le charbon.

L’atteinte de cette cible serait possible avec un réacteur à sels fondus parce que le profil de sécurité unique offert par un combustible liquide à base de sels chimiquement stables réduit considérablement les hasards associés à l’opération d’un réacteur nucléaire.

L’annonce a été faite le 15 janvier 2016 par le Département de l’Énergie des États-Unis d’une subvention allant jusqu’à 40 millions de dollars, avec une somme initiale de 6 millions de dollars, pour développer le Réacteur Rapide à Chlorures Fondus (Molten Chloride Fast Reactor, MCFR). Terrapower développe ce réacteur avec Southern Company, un des plus grands producteurs d’électricité des États-Unis, et avec la collaboration du Electric Power Research Institute, de l’Université Vanderbilt, et du Laboratoire national d’Oak Ridge.

Partenaires MCFR.jpg

Mais Bill n’est pas le seul à s’intéresser aux réacteurs à sels fondus outre-atlantique.

Le 8 janvier 2016 la société canadienne Terrestrial Energy a annoncé avoir terminé un tour de financement, pour 10 millions de dollars canadiens. A rajouter à leur premier tour de capital d’amorçage qui a levé environ 1 million de dollars canadiens. Un troisième tour est prévu pour 2016. Terrestrial Energy vient de passer un jalon majeur dans le développement de leur Réacteur Intégral à Sels Fondus, avec l’annonce le 25 février 2016 de leur engagement dans le processus de validation de leur technologie avec la Commission canadienne de sûreté nucléaire. Ils ont publié le 1 mars 2016 une série d’images pour mieux visualiser l’architecture de la technologie :

IMSR

Et comme Terrapower, Terrestrial Energy a réussi à obtenir un soutien gouvernemental. Le 4 mars 2016, le gouvernement canadien a annoncé une subvention de 5,7 millions de dollars canadiens. Terrestrial Energy a rajouté à cette annonce qu’ils vont fabriquer d’ici septembre 2018 un prototype non-nucléaire de leur réacteur, chauffé électriquement, pour effectuer des essais de validation.

Dans un entretien avec le site internet Nuclear Energy Insider publié le 7 mars 2016, leur directeur général Simon Irish a dit : « La baisse des coûts associée à ce système signifie que le coût moyen actualisé est estimé à $40-$50 / MWh, sur la base d’un réacteur d’une capacité de 300 MWe. »

Et à Boston, l’entreprise Transatomic Power a levé 6,3 millions de dollars de différents investisseurs privés, y compris le Founders fund de Peter Thiel, le financier de PayPal et Facebook. Transatomic développe un réacteur à sels fondus qui serait capable de transformer les déchets issus des réacteurs à eau pressurisée actuels en énergie, et ainsi offrir une solution à la question de la gestion de ces déchets.

TAP

Ca commence à faire beaucoup de dollars !

3-million.jpg

Avec ce niveau d’intérêt, on peut se demander combien de temps encore la France peut continuer à ignorer les avantages de la fission liquide.

Nucléaire : l’impératif de l’innovation

Hugh MacDiarmid est un homme avec une mission.

L’ex PDG d’Energie Atomique du Canada Limité est maintenant président du conseil d’administration de Terrestrial Energy, l’entreprise créée fin 2012 à Ottowa pour créer et commercialiser leur technologie de Réacteur à Sels Fondus Intégral (RSFI).

Le 24 septembre 2014, il a prononcé un discours au prestigieux Club économique du Canada, avec le titre « Nucléaire : l’impératif de l’innovation ».

(vidéo sous-titrée en français)

Il est intéressant de lister quelques phrases clés de la traduction française de ce discours :

  • A Terrestrial Energy, je crois que nous avons quelque chose de spécial
  • Nous sommes confrontés à une croissance toujours plus élevée de la demande d’énergie.
  • L’innovation viendra sûrement et elle va créer une rupture.
  • Nous pensons que cet avenir pourrait arriver plus tôt que prévu.
  • Il n’y a pas assez de bonnes réponses dans la gamme existante de solutions d’approvisionnement.
  • Le réacteur à sels fondus intégral, le RSFI, pourrait être l’une des réponses à cette insuffisance de l’offre
  • C’est une opportunité formidable pour la communauté nucléaire au Canada.
  • Qu’est-ce qu’un réacteur à sels fondus et comment c’est différent ? De façon générique, c’est un système de réacteur qui utilise un combustible liquide. C’est une différence fondamentale. Tous les autres utilisent un combustible solide.
  • Il doit passer le test de la viabilité commerciale – et nous croyons que notre RSFI passe ce test.
  • La valeur en capital est largement récupérée sur la durée de vie de sept ans que nous estimons pour l’unité cœur du RSFI.
  • Nos estimations indiquent que le RSFI va démontrer un coût d’énergie sur durée de vie le plus bas de toute technologie connue, et par une certaine marge.
  • Le RSFI sera une machine beaucoup moins chère à construire et à exploiter – point.
  • Nous avons choisi le graphite comme modérateur.
  • Le RSFI répond à la définition acceptée d’un petit réacteur modulaire.
  • La consommation d’uranium par kilowatt-heure sera un sixième du nucléaire conventionnel.
  • Pour nous, le combustible nucléaire usé est une source d’énergie intéressante.
  • Le RSFI a une empreinte de déchets beaucoup plus petite, avec une durée relativement courte.
  • La température de sortie plus élevée ouvre de nombreuses nouvelles applications industrielles qui ne sont pas viables pour le nucléaire classique. Nous pensons que le marché de la chaleur industrielle pourrait devenir encore plus grand pour le RSFI que la production d’électricité.

Il est également instructif de découvrir sur le site internet de Terrestrial Energy le calibre et le niveau d’expérience de l’équipe dirigeante de cette entreprise.

Alors, qui sera le premier dans la course à la fission liquide ? La Chine ? Le Canada ? Le Royaume-Uni ? Ou un autre ? Et quand verrons-nous cette technologie en Europe ?

Au Canada, un réacteur à sels fondus pour 2021

L’entreprise Terrestrial Energy Inc. (TEI) a été fondée fin 2012. Avec son siège dans l’Ontario, Canada, elle a comme mission de développer un réacteur à sels fondus opérationnel de démonstration à une échelle commerciale pour 2021 – entièrement sous licence et prêt pour un déploiement commercial important.

Terrestrial Energy Inc

Terrestrial Energy a été créé autour de David Leblanc (centre) et son portfolio de propriété intellectuelle. D’en haut à gauche : Louis Plowden-Wardlaw, Hugh MacDiarmid, Simon Irish, Canon Bryan, Paul McIntosh, John Kutsch, Bryan Mercer, Chris Popoff

TEI a annoncé lundi 31 mars que l’entreprise a clôturé avec succès son dernier tour de financement du capital d’amorçage, et que ce tour a été sursouscrit. Elle a également annoncé la nomination de Hugh MacDiarmid en tant que président du conseil d’administration. M. MacDiarmid a accumulé une vaste expérience de direction dans de grandes entreprises comme Énergie atomique du Canada limitée, où il a servi en tant que PDG de 2008 à 2011.

Le réacteur à sels fondus intégral de TEI est une conception petite et modulaire, avec des modèles allant de 29 MWe à 290 MWe – parfaitement adaptés pour les collectivités éloignées et les activités industrielles, y compris la fourniture d’énergie par réseau électrique ou hors-réseau.

IMSR FR

La technologie des réacteurs à sels fondus représente une révolution dans la sécurité nucléaire, la gestion des déchets, la résistance à la prolifération et la compétitivité du coût de l’énergie.

SMR FR

Le Canada présente un environnement légal et politique favorable pour l’entreprise, pour le développement, l’obtention de licences et le marketing d’un réacteur à sels fondus. Le conseil d’administration de TEI est composé de dirigeants des secteurs des sables bitumineux, des mines et de la finance.Installation FRL’entreprise a désormais le financement nécessaire pour progresser à la prochaine phase de conception amont, comme prévu. Le développement est prévu en 3 étapes:

i) Démarrage : Production d’un rapport de pré-concept.

ii) Production d’un rapport de design conceptuel.

iii) Construction et obention d’une licence. Développement commercial.

Ces 3 étapes doivent se terminer en 2021. Une phase de commercialisation de le technologie s’en suivra.

Venez pour le thorium, restez pour le réacteur

« Le mieux est l’ennemi du bien. »

Dans sa présentation à la quatrième conférence du « Thorium Energy Alliance » à Chicago en juin 2012, Dr. David Leblanc nous explique qu’il y a moult façons différentes de concevoir un réacteur nucléaire à sels fondus (RSF).

Le fichier .pdf de cette présentation est ici.

Il est important de comprendre que les RSF sont une famille de réacteurs. Sous certains aspects, tous les réacteurs de cette famille sont égaux :

  • Ils utilisent un combustible liquide
  • Ils fonctionnent à pression atmosphérique
  • Ils peuvent fournir une énergie moins chère que les combustible fossiles
  • Ils fonctionnent à haute température, permettant un meilleur rendement dans la génération d’électricité
  • Ils génèrent des déchets qui ont une radioactivité signifiante pendant quelques centaines d’années seulement
  • Ils ont un niveau de sécurité largement supérieur aux réacteurs actuels de génération 2 et 3, refroidis à l’eau sous pression

… mais sous d’autres aspects, certains RSF sont plus égaux que d’autres. Et là, tout dépend des objectifs que l’on se donne.

Alors que la communauté scientifique se concentre sur la conception du meilleur RSF possible, pour optimiser des facteurs tels que prix de l’énergie et consommation de combustible (et c’est très bien!), David Leblanc cherche à identifier le RSF avec la conception la plus simple possible, pour réduire les barrières d’entrée à cette technologie et permettre son rapide déploiement.

Le thorium, avec une abondance dans la croute terrestre trois à quatre fois plus importante que l’uranium, représente certes le combustible optimal. Et un réacteur surgénérateur comme LFTR (USA) ou MSFR (France) représente certes la machine optimale pour exploiter son énergie. Mais l’uranium n’est pas l’ennemi d’un réacteur à sels fondus, et il existe une variante de RSF appelée DMSR (Denatured Molten Salt Reactor –> Réacteur à Sels Fondus Dénaturés) qui peut fonctionner avec un mélange thorium / uranium, ou bien avec de l’uranium uniquement, qui serait plus simple à déployer et auquel David Leblanc s’intéresse particulièrement.

Le concept du DMSR a été proposé par le Laboratoire National d’Oak Ridge (ORNL) en 1980. David Leblanc travaille sur une amélioration de ce concept qui aurait les caractéristiques suivantes :

  • Environ 100m^3 de sel
  • Fonctionnement pendant 10 à 15 ans sans retraitement du sel
  • Utilisation annuelle d’environ 35 tonnes d’uranium par GWye (soit 17% des besoins d’un réacteur à eau pressurisée)
  • Démarrage avec seulement 3,5 tonnes par GWe d’uranium 235 fissile (en format faiblement enrichi)
  • Très grande résistance à la prolifération nucléaire
  • La moitié des produits de fission est collectée sous forme gazeuse
  • Pertes de neutrons limitées à 5% (REP : 22%, CANDU : 12%)

Une application de cette technologie pourrait être l’extraction de pétrole des sables bitumineux au Canada, avec l’utilisation de la chaleur nucléaire pour générer la vapeur nécessaire à l’extraction « in situ » avec la technologie SAGD (Drainage Gravité Assisté par Vapeur).

Dans un réacteur surgénérateur, un retraitement régulier du sel est nécessaire pour éviter les pertes de neutrons dues à l’empoisonnement par les produits de fission. Mais c’est ce retraitement qui présente un des plus grands défis techniques, et donc une dépense importante en coûts de recherche et développement pour éprouver la technologie. Le DMSR pourrait permettre de bénéficier plus rapidement des avantages des RSF, et de développer en parallèle les concepts optimums surgénérateurs.

Les réacteurs à sels fondus sont connus pour leur association avec le thorium, mais le plus important serait de commencer dès que possible à bénéficier de leurs très grands avantages dans la génération d’énergie sans CO2, et d’augmenter notre expérience réelle dans leur conception, construction et opération. Le réacteur est donc plus important que le combustible.

Comme le dit David Leblanc, « Venez pour le thorium, restez pour le réacteur » !