Le nucléaire est dans son enfance

Dans une salle de squash abandonnée, sous les gradins du stade de football américain de l’université de Chicago, le 2 décembre 1942 l’humanité a donné naissance à la fission nucléaire.

Les jeunes parents humains de cet enfant tout puissant vivaient en période de guerre. Impressionnés par sa force, à peine sortie de son oeuf ils l’ont envoyé faire son service militaire – l’énergie nucléaire est devenue un enfant soldat à l’âge de deux ans et demi.

On est ce qu’on mange

Les humains sont de l’espèce homo sapiens. Pour s’alimenter ils ont eu l’habitude depuis 200 000 ans de cueillir ce qu’ils trouvaient dans la nature, puis de rejeter les déchets de leur système digestif dans la nature.

Remarquant que leur nouvel enfant avait un goût prononcé pour un isotope rare d’uranium fissile, et à la demande des militaires, les heureux parents ont tout de suite diversifié avec de la nourriture solide. L’énergie nucléaire a donc mangé dès le début un régime de pastilles solides d’oxyde d’uranium, selon une recette de préparation spéciale. Mais les humains étaient désagréablement surpris de trouver que ce qui sortait du système digestif de cet enfant était particulièrement toxique.

solutions-odeur-couches.png

Dès sa démobilisation en 1945, les parents de cette jeune énergie ont voulu qu’elle fasse une contribution positive à la société. Ils l’ont donc envoyée à la prestigieuse École des Énergies, pour apprendre à côté des autres énergies comment contribuer à la prospérité de l’humanité et à la protection de l’environnement.

Le nucléaire à l’École des Énergies

Quand ils ont compris l’énorme potentiel de cet enfant, les professeurs de cette école l’ont accueilli à bras ouverts. En particulier, il est rapidement devenu le chouchou des profs de physique, qui lui ont montré des dizaines de filières différentes pour grandir et réaliser son potentiel, à tel point que les autres élèves comme le gaz ou le charbon étaient jaloux et ont commencé une longue campagne de harcèlement contre lui, dans la cour de récréation qui est le marché mondial de l’énergie. Il semblerait que le harcèlement est permis à l’école des énergies, car ni profs ni parents ne sont intervenus pour l’arrêter.

Mais suite à des cours d’ingénierie où il a appris l’importance de la simplicité de conception et l’utilisation des connaissances acquises, une orientation principale a été choisie pour ce jeune – celle du Réacteur à Eau Pressurisée. Il a donc continué avec son régime de nourriture solide, et à l’âge de 73 ans il porte toujours des couches pour confiner ses déchets toxiques et éviter leur dispersion dans l’envionnement où ils seraient dangereux pour les humains et l’environnement.

Accident de couche

En de rares occasions où il y a eu des accidents de couche à l’école, les autres énergies en ont profité pour harceler encore plus et humilier le jeune élève – au point que même ses parents ont commencé à avoir des doutes en lui. Avec sa confiance mise à mal, ses résultats scolaires, d’abord prometteurs, ont commencé à décrocher.

Consommation nucléaire

Même si cet enfant produit 32% de notre énergie propre, il se révèle un peu fragile. Peut-être faut-il retirer son argent de poche pour le donner aux énergies renouvelables ou à son petit frère la fusion nucléaire ?

Les frais de scolarité à l’École des Énergies sont élevés, et il est en difficulté. Faut-il arrêter son parcours ? (après 73 ans, on parle d’une technologie mature, non ?)

Certains pensent que c’est un enfant du diable et qu’il faut l’abandonner ou même le tuer !

baby

Non.

Le problème n’est pas l’énergie nucléaire – c’est nous, ses parents.

Quand un de nos enfants humains est en difficulté scolaire, on le punit ou on le soutient ? Quand il cherche sa voie pour faire un métier utile, on l’abandonne ou on l’oriente ?  En cas d’accident ou maladie, on le critique ou on l’aide à se soigner ? On se plaint de ce qu’il nous coûte ou on admire son potentiel ?

Un enfant est ce qu’il y a de plus précieux au monde et nous sommes coupables d’une grosse négligence parentale à l’encontre de cet enfant nucléaire. Certes, sa date de naissance n’était pas fortuite – sa carrière militaire courte a forcément laissé quelques troubles psychologiques – mais il a appris sa leçon :

Bombe et centrale smileys

Energie nucléaire : bonne. Arme nucléaire : mauvaise

La fission nucléaire est tout sauf une technologie mature. Les humains ont commencé à exploiter le charbon il y a 500 ans mais sa consommation continue à croître aujourd’hui. Le Réacteur à Eau Pressurisée est une technologie avec une certaine maturité mais qui est loin d’être en fin de vie. Il y a des centaines d’autres façons de produire de l’énergie avec la fission nucléaire – pour l’instant nous n’avons exploré en profondeur qu’un seul chemin.

Le nucléaire est dans son enfance – son potentiel pour apporter énergie et prospérité aux humains reste énorme. Nous lui avons donné la vie, nous devons le soutenir et l’aider à grandir.

Verre vide ou plein.jpg

La première chose à changer est son alimentation. Un régime de nourriture liquide à base de sels fondus peut l’aider à mieux digérer, pour nous donner moins de problèmes avec ses déchets. Diversifier avec du thorium pourrait être une option intéressante aussi. Ensuite nous devons soutenir et renforcer sa scolarité, le protéger du harcèlement, et compléter son education avec des études de chimie, d’architecture, de méthodes et d’économie. Ces changements marqueront le début d’une deuxième ère nucléaire.

Pour accélérer notre transition énergétique, le problème n’est pas l’énergie nucléaire – c’est nous.

Sources des images : 1, 2, 3 (remerciements à M. Shellenberger pour l’idée), 4, 5.

UK flag Cet article est disponible en anglais ici.

Publicités

Machines à vapeur

Attention ! Question piège :

Qui a inventé la machine à vapeur ?

Inventeurs.jpg

La réponse ?

Tous ont apporté leur pierre à l’édifice. La nature du développement technologique est ainsi – chaque inventeur se tient sur les épaules des géants qui l’ont précédé.

L’histoire du développement humain est étroitement liée au coût de l’énergie. Les humains chasseurs-cueilleurs de la préhistoire ont besoin d’une grande superficie de terrain pour survivre. Une population plus importante devient possible avec l’agriculture, puis en remplaçant l’énergie mécanique des hommes par celle des animaux de trait. Mais à la fin du moyen âge, l’Europe est confrontée à la catastrophe écologique de la déforestation. On commence alors à exploiter l’énergie thermique de la houille, mais les réserves disponibles près de la surface sont rapidement épuisées.

Thomas Newcomen combine les idées de Denis Papin et Thomas Savery pour inventer en 1712 la première machine à vapeur utilisée commercialement, pour extraire l’eau des mines et permettre une extraction en profondeur.

Newcomen_atmospheric_engine_animation

Avec cette machine thermique les humains sont enfin capables de transformer l’énergie thermique en énergie mécanique. C’est le début de la révolution industrielle.

thermique-mécanique.jpg

Le coût de l’énergie issue d’une machine thermique est composé :

  • du coût du capital de la machine
  • du coût du carburant pour la source de chaleur
  • des coûts de fonctionnement

La machine de Newcomen est capable de convertir en énergie mécanique seulement 1,3% de l’énergie dans le charbon qui l’alimente. Avec ce faible rendement, son coût du carburant est très important, mais il faut attendre 58 ans et l’invention de James Watt pour faire mieux.

Machine de Watt.jpg

La genie de Watt est de réaliser que la machine de Newcomen gâche presque trois quarts de l’énergie de la vapeur en chauffant le piston et la chambre. Avec une chambre de condensation séparée, le rendement est plus que doublé. Le coût de la machine étant similaire, l’énergie produite coûte bien moins cher.

Watt s’associe alors avec Matthew Boulton. Les revenus de leur entreprise « Boulton & Watt » sont avant tout générés par les économies en charbon réalisées par les propriétaries des machines.

Pensez-vous que James Watt a inventé la machine à vapeur ?

Rendement des machines à vapeur

Source : « Dynamics of Technological Change« , L.A. Girifalco, p.484

L’histoire de la révolution industrielle est une course pour atteindre des rendements toujours plus importants des machines thermiques. C’est vrai que Watt y a largement contribué, mais cette démocratisation du coût de l’énergie qui rend possible la vie moderne est le travail de multiples inventeurs et ingénieurs.

La machine de Newcomen, utilisée uniquement dans les mines, a rapidement été remplacée par celle de Watt. Avec un coût de l’énergie toujours en baisse grâce aux améliorations en continu chez Boulton & Watt, leur machine remplace également l’énergie éolienne des moulins à vent et l’énergie hydraulique des roues à aubes, devenant de plus en plus utile.

Il est étonnant dans le graphique ci-dessus de remarquer qu’il faut 200 ans pour passer d’un rendement de 1,3% au rendement de 20% de la première turbine de Charles Parsons. On ne peut jamais sous-estimer la difficulté que présente le changement technologique – souvent les technologies nécessaires à la fabrication d’une machine rentable progressent moins vite que les théories et les idées des inventeurs.

Aujourd’hui les turbines dans les centrales électriques à cycle combiné gaz permettent d’atteindre des rendements supérieurs à 61%, mais les temps modernes ont vu un autre progrès important dans les machines à vapeur, du côté de la source de chaleur.

EPR Flamanville

Une grande machine à vapeur actuellement en construction à Flamanville

Les combustibles nucléaires à base d’uranium et thorium ont une densité énergétique environ 1 million de fois supérieure aux combustibles fossiles, mais les machines pour extraire cette énergie sont bien plus complexes que les chaudières des anciennes machines à vapeur. Le nucléaire a donc une logique économique différente, où le coût du carburant est minime et le capital investi dans la machine représente la plupart du coût de l’énergie.

En 2016 l’humanité est confrontée au réchauffement climatique. Malgré le progrès des énergies renouvelables et du nucléaire à bas carbone, les énergies fossiles progressent plus vite parce qu’elles sont moins chères. L’histoire de la machine à vapeur nous montre que la prospérité humaine progresse quand le coût de l’énergie diminue. Le défi majeur du 21ème siècle est d’atteindre une prospérité décente pour chaque humain et simultanément d’arrêter le réchauffement climatique et réduire l’impact des humains sur l’environnement. La conférence COP21 a échoué à mettre en place une taxe carbone parce qu’il est politiquement impossible de rendre l’énergie plus chère, même si elle est sale. L’énergie propre est un problème d’ingénierie – elle doit être moins chère que le charbon.

Le développement commercial de la fission nucléaire a atteint un niveau très similaire à celui de la machine à vapeur il y a 250 ans.

  • Après des premières expériences, un seul principe a été déployé commercialement
  • Cette technologie a atteint ses limites
  • La technologie est sur le marché depuis plus de 50 ans
  • L’utilisation du carburant est faible
  • Le coût de l’énergie produite n’est pas très competitif avec les alternatives sur le marché
  • Quelques centaines de machines ont été produites
  • Les machines ont une seule utilisation commerciale
  • La civilisation humaine est face à une crise environnementale
  • Le rythme de déploiement des machines est insuffisant pour résoudre cette crise environnementale.
  • Le potentiel théorique reste immense
  • Un système amélioré a été inventé, avec le potentiel de faire une rupture dans le coût de l’énergie
  • Ce nouveau système est en cours de développement
  • L’industrie établie a dénoncé la faisabilité du nouveau système [1]

Tout comme Boulton & Watt, les innovateurs actuels dans l’énergie nucléaire ont réalisé l’importance primordiale de réduire le coût de cette énergie. Mais au lieu de viser une meilleure utilisation du carburant, les principes économiques de l’énergie nucléaire nécessitent de réduire le coût de la machine.

Alors, pourquoi les systèmes d’énergie nucléaires actuels sont-ils chers?

Quand on fissionne le noyau d’un atome, deux nouveaux atomes sont générés qui s’appellent des produits de fission. Ils sont très radioactifs et hasardeux pour les humains. Ces atomes se désintègrent sur des périodes plus ou moins longues jusqu’au moment où ils deviennent des isotopes stables qui ne sont plus hasardeux.

Dans les réacteurs à eau pressurisée utilisés aujourd’hui, le combustible est un solide. Les produits de fission restent enfermés dans cette matière solide mais peuvent s’échapper si le combustible chauffe et fond. Comme certains produits sont des gaz, un confinement du réacteur est nécessaire pour éviter leur dispersion dans l’atmosphère en cas d’accident. Ce confinement est compliqué et cher parce que le système fonctionne avec une pression très élevée. Ces fragilités nécessitent l’utilisation de nombreux systèmes de sécurité compliqués et onéreux pour garantir un niveau de sûreté acceptable.

Le coût d’un système d’énergie nucléaire est une fonction du profil de sécurité intrinsèque du système de réacteur.

Dans un réacteur à sels fondus le combustible est un liquide. Le mélange de sels est choisi pour rester liquide sur une grande plage de températures, et pour pouvoir dissoudre la matière fissile et la plupart des produits de fission sous la forme de sels qui sont chimiquement très stables. La dilatation du liquide selon la température assure un fort coefficient de contre-réaction qui donne une stabilité dynamique de fonctionnement, à pression atmosphérique. Avec une sécurité intrinsèque assurée par cette conception chimique, la « fission liquide » permet d’envisager un système de réacteur plus simple et bien moins cher.

Une course internationale a commencé pour lancer cette technologie sur le marché. La magie de l’entrepreneuriat, quand un architecte technique avec une idée rencontre un investisseur avec des fonds, est à l’oeuvre pour concevoir puis construire ces machines, avec des millions de dollars engagés. La rupture technologique de la fission liquide n’est plus une question de « si ». C’est une question de « qui » et de « quand ».

Qui seront les Boulton & Watt du 21ème siècle ?

Partenariats

L’énergie nucléaire suivra la même courbe de développement que la machine à vapeur, mais avec un décalage d’environ 250 ans. Avec un coût compétitif et une capacité de production importante, elle contribuera activement à lutter contre le réchauffement climatique.

Pour les systèmes à fission liquide en développement aujourd’hui, les principaux éléments de création de valeur qui permettront de réduire le coût de l’énergie seront :

  • La sécurité intrinsèque d’un combustible liquide chimiquement stable
  • Une conception élégante et simplifiée, avec une architecture astucieuse du système complet
  • Une température de fonctionnement plus élevée
  • Une approche modulaire pour la fabrication des bâtiments et composants, l’assemblage et la mise en exploitation

Pour le futur, il reste un potentiel important de réduction de coût avec :

  • Des systèmes surgénérateurs
  • Des machines thermiques plus petites qui exploitent mieux les hautes températures de fonctionnement
  • Un cycle de combustible au thorium, ou qui incinère les déchets des réacteurs actuels
  • Des améliorations des matériaux pour prolonger la vie de certains composants
  • Un processus rationalisé pour l’attribution de licences d’exploitation

… sans mentionner les inventions à venir.

Et comme la machine à vapeur, les systèmes d’énergie nucléaire moins chers et plus compacts trouveront beaucoup plus d’utilisations :

  • Fourniture de chaleur pour les processus industriels
  • Production de carburants liquides de synthèse à partir d’eau et de dioxide de carbone
  • Dessalement de l’eau de mer
  • Alimentation de collectivités hors réseau
  • Propulsion marine

Ce futur est possible. Il est même probable car il est nécessaire. Avec l’esprit d’entreprenariat qui animait Boulton & Watt nous pouvons fabriquer des machines à vapeur modernes et moins chères qui seront un progrès pour l’humanité et pour la planète.

[1] Quand John Smeaton a vu la première machine de Watt, il a signalé à la société des ingénieurs que « ni les outils ni les ouvriers existent qui peuvent fabriquer une machine aussi complexe avec suffisamment de précision ».

UK flag Cet article a été publié en anglais sur le site de la « Alvin Weinberg Foundation »

Le partenariat nucléaire franco – britannique

Dans la banlieue verdoyante de Londres, à côté du célèbre jardin botanique royal de Kew, se trouve un bâtiment qui abrite les archives nationales britanniques.

archives kew

Et dans ce bâtiment il y a un document remarquable.

Programme français RSF

Cliquez sur l’image pour voir le document complet (.pdf)

Déclassifié en janvier 2006, c’est un rapport sur la visite, le 15 mai 1973, au site CEA de Fontenay-aux-roses de deux scientifiques britanniques de l’Autorité britannique de l’énergie atomique (UKAEA). Dans le premier paragraphe de l’introduction, on découvre que :

« Des discussions ont lieu entre les parties intéressées concernant la possibilité de mettre en place des accords de collaboration en Europe pour poursuivre le développement d’un réacteur à combustible aux sels fondus. »

En effet, à cette époque le UKAEA développait un réacteur baptisé « Molten Salt Fast Reactor » (MSFR).

UKAEA-MSFR-schematics-AERE-Winfrith-1972-4-1-e1415893799821

Le réacteur MSFR britannique

UKAEA-MSFR-schematics-AERE-Winfrith-1972-4-2-e1415892764528

Coupe pour illustrer le coeur et les échangeurs de chaleur intermédiaires

Selon un article publié par l’Alvin Weinberg Foundation, les britanniques ont décidé qu’il y aurait peu à gagner de reproduire le travail des américains à ORNL, donc ils ont choisi de se concentrer sur un concept de réacteur à neutrons rapides de 2,5GWe refroidi au plomb, en utilisant des sels de chlorure, par opposition au réacteur MSBR à spectre thermique d’ORNL qui employait des sels de fluorure.

Ce travail, qui semble avoir reçu un financement conséquent du gouvernement britannique, était très intéressant pour l’équipe du CEA qui travaillait également à cette époque sur les réacteurs à sels fondus. Selon le rapport, le CEA sous la direction d’un chimiste (M. Faujeras) et d’un physicien (M. Lecocq),

« commence maintenant une expansion considérable de leurs études d’évaluation (jusqu’à 12 effectifs à temps plein) et a établi une collaboration étroite avec Pechiney-Ugine Kuhlmann (PUK). (…) Un intérêt industriel de ce type ajoute une nouvelle dimension à la réflexion sur les perspectives des systèmes à sels fondus et PUK montre à la fois de l’enthousiasme et des idées avancées concernant la conception. »

En 1973, PUK était le premier groupe industriel privé français. Présent dans l’aluminium, la chimie, le cuivre, le combustible nucléaire et les aciers spéciaux, le groupe avait des compétences idéales pour participer à un projet industriel de réacteur à sels fondus. Très exposé au coût de l’énergie, les chocs pétroliers ont signalé dès 1974 le début de son déclin.

La transcription en anglais

 

A la fin du rapport, dont vous trouverez ici la transcription en anglais, (version traduite en français, à venir), on sent la concurrence importante des réacteurs à combustible solide :

 

Nous avons convenu qu’avec un engagement lourd de ressources aux programmes de RNR, la voie la plus prometteuse pour le développement des RSF était par la collaboration internationale. (…)

En collaboration européenne, les français ont suggéré qu’un accord Royaume-Uni / France, fondé sur notre intérêt actif mutuel, et des structures comparables dans le CEA / AEA , EDF / CEGB et dans l’industrie, pourrait former le noyau d’autres accords (…)

C’est la décision des américains de poursuivre les surgénérateurs à combustible solide, et d’arrêter les recherches sur les combustibles liquides à Oak Ridge, qui a également signalé l’arrêt des programmes au Royaume-Uni et en France.

– – – – – – – – – – – – – – –

Cette semaine, une nouvelle page va s’écrire dans l’histoire de la fission nucléaire, avec la convention SFEN sur le partenariat franco – britannique pour un futur bas-carbone.

Cliquez pour le site SFEN de la convention

Cliquez pour le site SFEN de la convention

Cet état major des industries nucléaires françaises et britanniques aura lieu à la maison de la chimie, le 5 mars 2015. On parlera de la COP 21, de Hinkley point, de la stratégie d’Areva et du nucléaire de demain.

Mais parlera-t-on dans les coulisses du potentiel énorme des combustibles nucléaires LIQUIDES ? Pourrait-on par exemple imaginer la reprise britannique d’un développement du concept français de MSFR, ou une collaboration entre la start-up britannique Moltex Energy et le géant français Areva ?

Areva - Moltex

Dans toute entente cordiale entre la France et le Royaume-Uni sur le futur du nucléaire, les systèmes à combustible liquide peuvent jouer un rôle important. Plus que jamais, c’est le moment de remettre en cause les effets de mode et d’évaluer chaque technologie sur ses mérites, et sur son potentiel de produire une énergie décarbonée moins chère.

La Passion d’Alvin Weinberg

5.0.3

Le physicien de 59 ans était dans une sorte de panique. La terre se réchauffait de plus en plus, et personne à Washington ne semblait s’en soucier. L’énergie nucléaire – la seule façon réaliste de produire beaucoup d’électricité avec peu d’émissions de carbone – était la solution. Mais la hausse des coûts de l’énergie nucléaire et la puissance du lobby du charbon semblaient l’emporter sur les préoccupations environnementales et la rationalité elle-même.

Il a commencé à écrire des articles. Le premier a été publié dans le journal Science. Il l’a appelé « Effets globaux de la production d’énergie par l’homme. » Ensuite, il a co-écrit un article évaluant ce qui se passerait si les Etats-Unis s’éloignaient du nucléaire. « La demande soutenue pour l’énergie durant les premières décennies du siècle prochain va pousser les concentrations de dioxyde de carbone dans l’atmosphère à des niveaux hautement préoccupants, même dans le cas de faible croissance de l’énergie. »

Le problème était le temps. « Avec l’effet d’inertie dans les systèmes d’approvisionnement en énergie, il est clair que les décisions prises aujourd’hui sur la question nucléaire / non nucléaire, » l’homme a écrit, « auront un impact qui se répercutera pour de nombreuses années à venir. » En d’autres termes, les générations futures dépendent des décisions sur l’énergie que nous prenons aujourd’hui.

Le physicien est allé au Capitole, à la recherche de sympathisants. « Je suis allé d’un bureau à l’autre à Washington, les courbes de l’accumulation de dioxyde de carbone dans la main, » l’homme se souvient. « Je leur ai rappelé que l’énergie nucléaire était sur le point de mourir. Il faut faire quelque chose. J’ai presque crié. »

L’année était 1974, et l’homme était le docteur Alvin Weinberg. Un vétéran du Projet Manhattan et le directeur du Laboratoire National d’Oak Ridge, Weinberg a créé le prototype d’un nouveau type de source d’énergie nucléaire, qui ne peut ni provoquer une fusion du cœur ni faire des armes.

Alors que la grande majorité des réacteurs nucléaires d’aujourd’hui sont refroidis à l’eau ordinaire, Weinberg a inventé un réacteur radicalement nouveau refroidi par des sels fondus. La perte du liquide de refroidissement était la cause des fusions du cœur à Three Mile Island et à Fukushima. En revanche, le réacteur de Weinberg ne pouvait pas subir une fusion du coeur parce que le combustible était déjà fondu et dissous dans le liquide de refroidissement à sels fondus.

Pour comprendre pourquoi l’énergie du thorium, refroidi par les sels fondus, a suscité la passion des scientifiques et des ingénieurs américains, ainsi que le gouvernement chinois, qui a récemment investi 350 millions de dollars dans un nouveau projet de sels fondus, alors vous devez comprendre la vie et l’époque d’Alvin Weinberg.

1.
Alvin Weinberg est né à Chicago en 1915 et a obtenu son doctorat en physique en 1939 de l’Université de Chicago. Son mémoire de maîtrise portait sur le spectre d’absorption infrarouge du CO2, présageant ses efforts ultérieurs pour alerter du réchauffement climatique. Au laboratoire métallurgique de l’Université de Chicago, il a côtoyé les physiciens Edward Teller, Léo Szilárd, et les lauréats du prix Nobel Arthur Compton, Eugene Wigner, et Enrico Fermi. Peu après, il a travaillé pour aider à construire la Bombe. Dans une note de 1944, il a avancé l’idée d’exploiter l’énergie nucléaire pour l’énergie civile, « … il sera peut être possible de faire fonctionner un tel système sous pression et obtenir de la vapeur à haute pression qui pourrait être utilisé pour la production d’énergie. »

En 1945, après la guerre, Weinberg est allé travailler au Laboratoire National d’Oak Ridge. Là, il a persuadé l’Amiral Hyman Rickover qu’un réacteur refroidi à l’eau fonctionnerait mieux sur les sous-marins – un exploit le mettant dans une position ambivalente, car conduisant à l’utilisation de l’eau comme liquide de refroidissement pour les réacteurs nucléaires civils. « Ainsi est né le réacteur à eau pressurisée, pas en tant que centrale commerciale, pas parce qu’il était bon marché ou intrinsèquement plus sûr que les autres réacteurs, mais plutôt parce qu’il était compact et simple et se prêtait à la propulsion navale, » écrivait-il avec mélancolie.

L’Armée de l’Air l’a alors chargé de la construction d’un avion à propulsion nucléaire. Alimenter un réacteur d’avion nécessite de la chaleur à 860°C – une température beaucoup plus élevée que les 315°C atteints par les réacteurs refroidis à l’eau. L’équipe de Weinberg a eu l’idée d’un mélange fondu de fluorures de zirconium et de sodium dans lequel ils mettaient le combustible d’uranium. Les sels de fluorure stables n’ont pas corrodé le récipient en acier inoxydable. Et comme le sel restait liquide à la pression atmosphérique, même à 1400°C, une surchauffe ne pouvait provoquer aucune libération de radioactivité.

L’expérience a fonctionné. En 1954, cette expérience de réacteur d’avion a produit 2,5 MW de puissance thermique à 860°C pendant 100 heures. On a démontré une stabilité intrinsèque de la réactivité, en ajustant automatiquement la puissance sans barres de commande, avec la variation du flux d’air de l’échangeur de chaleur. Mais à la fin il était plus logique de l’utiliser pour la production d’électricité que pour alimenter les avions (qui encore aujourd’hui sont alimentés par le kérosène).

En 1955, à l’âge de 40 ans, Weinberg est devenu le directeur d’Oak Ridge. Dès 1966, son équipe avait construit un prototype d’uranium dissous dans les sels de fluorure fondus du lithium et du béryllium, qui a fonctionné jusqu’en 1969.

Weinberg était ravi. Un tel réacteur pourrait fournir au monde une énergie sans limite et permettre de protéger l’environnement. Il pourrait créer de l’électricité pour les plus démunis et de l’eau douce à partir de l’eau salée. Et si le thorium était utilisé plutôt que de l’uranium, on ne manquerait jamais de combustible, le thorium étant abondant dans la croûte terrestre.

2.
Weinberg était plus porté sur la sécurité que ses collègues et a été consterné que des réacteurs basés sur une conception faite pour des sous-marins aient atteint une position dominante sur le marché. « Le train en marche de la chaudière a tellement de pression que tout le monde est monté dessus, pêle-mêle, » il fait remarquer plus tard.

En 1959, il a créé la revue « Nuclear Safety », et il a fait travailler une centaine de scientifiques et d’ingénieurs à Oak Ridge sur la recherche de la sécurité nucléaire. Quand les réacteurs nucléaires sont devenus plus grands, le laboratoire de Weinberg a exprimé des inquiétudes que dans un accident avec perte de refroidissement – comme ceux de Three Mile Island et Fukushima – la chaleur de désintégration résiduelle (pas une réaction en chaîne continue) pourrait ouvrir une brèche dans les trois barrières de confinement.

Au début des années 60, Weinberg et ses collègues ont mené une série de tests qui ont mis en lumière des failles de sécurité dans la conception du réacteur à eau pressurisée. Une sécurité supérieure était très importante pour Weinberg : pour lui, un réacteur à sels fondus qui utilisait du thorium comme combustible offrirait des avantages considérables par rapport aux modèles à eau légère. En tant que liquide de refroidissement, les sels fondus à pression atmosphérique résistent à des températures beaucoup plus élevées et réduisent les contraintes mécaniques sur la cuve du réacteur. En tant que combustible, le thorium ne peut pas être utilisé pour fabriquer des armes utiles ; dans un réacteur, il peut générer du nouveau combustible à l’uranium qui est consommé pour produire de l’énergie.

Les innovations de Weinberg se sont étendues au-delà des réacteurs à sels fondus. Le travail sur la sécurité à Oak Ridge a influencé la création du réacteur à lit de boulets refroidi au gaz à haute température fonctionnant à l’Université de Tsinghua en Chine. Et les nouvelles centrales nucléaires en cours de construction en Géorgie intègrent des fonctionnalités de sécurité passive. Le réservoir annulaire d’eau sur le toit d’un réacteur AP1000 de Westinghouse peut refroidir un réacteur non alimenté pendant trois jours après un arrêt. Le réacteur mPower de Babcock & Wilcox continue en refroidissement passif pendant trois jours sur batterie. Et le réacteur plus petit de NuScale, financé par le ministère américain de l’Énergie, continue indéfiniment avec un refroidissement à l’air après l’évaporation de l’eau dans son réservoir.

Mais l’obsession de Weinberg pour la sécurité a fortement déplu à certains de ses collègues. Chet Holifield, le président du Comité mixte sur l’énergie atomique de 1970 était scandalisé par les efforts combinés de Weinberg et des sénateurs Howard Baker et Edmund Muskie pour établir un laboratoire national de l’environnement à Oak Ridge. Holifield « ne voulait pas que les laboratoires nucléaires soient contaminés par le mouvement écologiste », a rappelé Weinberg. Holifield lui a dit, « Alvin, si vous êtes préoccupé par la sécurité des réacteurs, alors je pense que c’est le bon moment pour vous de quitter l’énergie nucléaire. » Weinberg a été viré peu de temps après. Six ans plus tard, la fusion du cœur de Three Mile Island est survenue.

3.
À l’automne 2013, quatre des plus grands scientifiques mondiaux du climat, parmi lesquels l’ancien scientifique de la NASA James Hansen, ont envoyé une lettre ouverte aux écologistes, demandant qu’ils inversent leur opposition à l’énergie nucléaire afin de sauver le climat. La lettre a été traitée comme une nouveauté dans les médias. Des spécialistes de l’environnement – pour l’énergie nucléaire ? Comme c’est étrange.

Et pourtant, il y avait le Dr Weinberg, l’un des scientifiques les plus respectés de l’Amérique, se faisant l’avocat de l’énergie nucléaire en faveur du climat près de 40 ans avant la lettre ouverte et une décennie et demie avant que Hansen déclare aux journalistes que ses collègues scientifiques devaient cesser leur baratin et reconnaître que les humains changeaient le climat.

Climat et énergie, pour Weinberg et beaucoup après lui, sont les deux faces d’une même médaille. Après un passage en tant que directeur de l’Office américain de recherche et de développement énergétiques en 1974, Weinberg avait réussi à fonder l’Institut pour l’analyse de l’énergie (IAE) aux Universités Associées d’Oak Ridge, soucieux de l’avenir de l’énergie. IAE a inventé le concept d’analyse du Taux de Retour Énergétique que nous utilisons aujourd’hui.

En 1976, à l’AIE Weinberg a prédit que « … la concentration atmosphérique de 375-390 ppm pourrait bien être une plage de seuil à partir duquel le changement climatique dû au CO2 sera séparable des fluctuations climatiques naturelles … Les conséquences d’une augmentation de cette ampleur de CO2 dans l’atmosphère, indiquent qu’il est prudent de procéder avec caution dans l’utilisation à grande échelle de combustibles fossiles. »

L’avis de Weinberg sur l’énergie était en contraste marqué avec les points de vue des antinucléaires qui ont fait valoir que les personnes pauvres à travers le monde ne tireraient aucun avantage d’une électricité fiable et bon marché. « Donner à la société une énergie abondante et pas chère » pour prendre la célèbre phrase du professeur de Stanford Paul Ehrlich en 1975, « équivaudrait à donner une mitrailleuse à un enfant imbécile. » Weinberg a farouchement soutenu le contraire : les sociétés à faible énergie sont beaucoup moins libres et « souffrent probablement de plus de pollution de l’air et de l’eau et des milieux urbains que les sociétés à haute énergie. » Plus, pas moins, d’énergie était au centre du bien-être.

Une nouvelle génération d’ingénieurs préoccupés par le changement climatique redécouvre Weinberg et son design. La société TerraPower de Bill Gates étudie les réacteurs à sels fondus. L’ingénieur du MIT Leslie Dewan a co-fondé Transatomic Power, qui utilise une conception de RSF. Et l’ancien employé de la NASA Kirk Sorensen a publié les documents originaux de R&D d’Oak Ridge sur l’Internet, et a fondé la société Flibe Energy.

La technologie a suscité un intérêt mondial. L’ancienne écologiste antinucléaire Baronesse Bryony Worthington a aidé à fonder la Fondation Alvin Weinberg basée à Londres, pour « re-catalyser la recherche, le développement et le déploiement des RSF déjà conçus, construits et éprouvés par Alvin Weinberg … pour lutter contre le changement climatique. » Et un article écrit par Robert Hargraves dans le journal American Scientist en 2010 a suscité le projet de développement de $ 350 000 000 de l’Académie des Sciences Chinoise, annoncé en 2012.

Avec la lettre ouverte des scientifiques du climat, avec un nombre croissant d’écologistes qui prônent l’énergie nucléaire, avec un nombre croissant de philanthropes comme Bill Gates et Paul Allen qui investissent dans la prochaine génération de nucléaire, l’altruisme qui a initialement motivé les scientifiques et les ingénieurs nucléaires revient enfin pour redéfinir l’énergie nucléaire. « Ce qui rendait Weinberg unique, » a déclaré Alexander Zucker, professeur de physique et collègue de Weinberg, « était sa profonde préoccupation pour le bien-être de l’homme. Il n’a jamais cessé d’y penser. »

 

Cet article est une traduction de l’article écrit par Robert Hargraves et publié le sur le site internet du Breakthrough Institute, le 5 février 2014. Robert Hargraves est l’auteur du livre « Thorium : energy cheaper than coal«