La Passion d’Alvin Weinberg

5.0.3

Le physicien de 59 ans était dans une sorte de panique. La terre se réchauffait de plus en plus, et personne à Washington ne semblait s’en soucier. L’énergie nucléaire – la seule façon réaliste de produire beaucoup d’électricité avec peu d’émissions de carbone – était la solution. Mais la hausse des coûts de l’énergie nucléaire et la puissance du lobby du charbon semblaient l’emporter sur les préoccupations environnementales et la rationalité elle-même.

Il a commencé à écrire des articles. Le premier a été publié dans le journal Science. Il l’a appelé « Effets globaux de la production d’énergie par l’homme. » Ensuite, il a co-écrit un article évaluant ce qui se passerait si les Etats-Unis s’éloignaient du nucléaire. « La demande soutenue pour l’énergie durant les premières décennies du siècle prochain va pousser les concentrations de dioxyde de carbone dans l’atmosphère à des niveaux hautement préoccupants, même dans le cas de faible croissance de l’énergie. »

Le problème était le temps. « Avec l’effet d’inertie dans les systèmes d’approvisionnement en énergie, il est clair que les décisions prises aujourd’hui sur la question nucléaire / non nucléaire, » l’homme a écrit, « auront un impact qui se répercutera pour de nombreuses années à venir. » En d’autres termes, les générations futures dépendent des décisions sur l’énergie que nous prenons aujourd’hui.

Le physicien est allé au Capitole, à la recherche de sympathisants. « Je suis allé d’un bureau à l’autre à Washington, les courbes de l’accumulation de dioxyde de carbone dans la main, » l’homme se souvient. « Je leur ai rappelé que l’énergie nucléaire était sur le point de mourir. Il faut faire quelque chose. J’ai presque crié. »

L’année était 1974, et l’homme était le docteur Alvin Weinberg. Un vétéran du Projet Manhattan et le directeur du Laboratoire National d’Oak Ridge, Weinberg a créé le prototype d’un nouveau type de source d’énergie nucléaire, qui ne peut ni provoquer une fusion du cœur ni faire des armes.

Alors que la grande majorité des réacteurs nucléaires d’aujourd’hui sont refroidis à l’eau ordinaire, Weinberg a inventé un réacteur radicalement nouveau refroidi par des sels fondus. La perte du liquide de refroidissement était la cause des fusions du cœur à Three Mile Island et à Fukushima. En revanche, le réacteur de Weinberg ne pouvait pas subir une fusion du coeur parce que le combustible était déjà fondu et dissous dans le liquide de refroidissement à sels fondus.

Pour comprendre pourquoi l’énergie du thorium, refroidi par les sels fondus, a suscité la passion des scientifiques et des ingénieurs américains, ainsi que le gouvernement chinois, qui a récemment investi 350 millions de dollars dans un nouveau projet de sels fondus, alors vous devez comprendre la vie et l’époque d’Alvin Weinberg.

1.
Alvin Weinberg est né à Chicago en 1915 et a obtenu son doctorat en physique en 1939 de l’Université de Chicago. Son mémoire de maîtrise portait sur le spectre d’absorption infrarouge du CO2, présageant ses efforts ultérieurs pour alerter du réchauffement climatique. Au laboratoire métallurgique de l’Université de Chicago, il a côtoyé les physiciens Edward Teller, Léo Szilárd, et les lauréats du prix Nobel Arthur Compton, Eugene Wigner, et Enrico Fermi. Peu après, il a travaillé pour aider à construire la Bombe. Dans une note de 1944, il a avancé l’idée d’exploiter l’énergie nucléaire pour l’énergie civile, « … il sera peut être possible de faire fonctionner un tel système sous pression et obtenir de la vapeur à haute pression qui pourrait être utilisé pour la production d’énergie. »

En 1945, après la guerre, Weinberg est allé travailler au Laboratoire National d’Oak Ridge. Là, il a persuadé l’Amiral Hyman Rickover qu’un réacteur refroidi à l’eau fonctionnerait mieux sur les sous-marins – un exploit le mettant dans une position ambivalente, car conduisant à l’utilisation de l’eau comme liquide de refroidissement pour les réacteurs nucléaires civils. « Ainsi est né le réacteur à eau pressurisée, pas en tant que centrale commerciale, pas parce qu’il était bon marché ou intrinsèquement plus sûr que les autres réacteurs, mais plutôt parce qu’il était compact et simple et se prêtait à la propulsion navale, » écrivait-il avec mélancolie.

L’Armée de l’Air l’a alors chargé de la construction d’un avion à propulsion nucléaire. Alimenter un réacteur d’avion nécessite de la chaleur à 860°C – une température beaucoup plus élevée que les 315°C atteints par les réacteurs refroidis à l’eau. L’équipe de Weinberg a eu l’idée d’un mélange fondu de fluorures de zirconium et de sodium dans lequel ils mettaient le combustible d’uranium. Les sels de fluorure stables n’ont pas corrodé le récipient en acier inoxydable. Et comme le sel restait liquide à la pression atmosphérique, même à 1400°C, une surchauffe ne pouvait provoquer aucune libération de radioactivité.

L’expérience a fonctionné. En 1954, cette expérience de réacteur d’avion a produit 2,5 MW de puissance thermique à 860°C pendant 100 heures. On a démontré une stabilité intrinsèque de la réactivité, en ajustant automatiquement la puissance sans barres de commande, avec la variation du flux d’air de l’échangeur de chaleur. Mais à la fin il était plus logique de l’utiliser pour la production d’électricité que pour alimenter les avions (qui encore aujourd’hui sont alimentés par le kérosène).

En 1955, à l’âge de 40 ans, Weinberg est devenu le directeur d’Oak Ridge. Dès 1966, son équipe avait construit un prototype d’uranium dissous dans les sels de fluorure fondus du lithium et du béryllium, qui a fonctionné jusqu’en 1969.

Weinberg était ravi. Un tel réacteur pourrait fournir au monde une énergie sans limite et permettre de protéger l’environnement. Il pourrait créer de l’électricité pour les plus démunis et de l’eau douce à partir de l’eau salée. Et si le thorium était utilisé plutôt que de l’uranium, on ne manquerait jamais de combustible, le thorium étant abondant dans la croûte terrestre.

2.
Weinberg était plus porté sur la sécurité que ses collègues et a été consterné que des réacteurs basés sur une conception faite pour des sous-marins aient atteint une position dominante sur le marché. « Le train en marche de la chaudière a tellement de pression que tout le monde est monté dessus, pêle-mêle, » il fait remarquer plus tard.

En 1959, il a créé la revue « Nuclear Safety », et il a fait travailler une centaine de scientifiques et d’ingénieurs à Oak Ridge sur la recherche de la sécurité nucléaire. Quand les réacteurs nucléaires sont devenus plus grands, le laboratoire de Weinberg a exprimé des inquiétudes que dans un accident avec perte de refroidissement – comme ceux de Three Mile Island et Fukushima – la chaleur de désintégration résiduelle (pas une réaction en chaîne continue) pourrait ouvrir une brèche dans les trois barrières de confinement.

Au début des années 60, Weinberg et ses collègues ont mené une série de tests qui ont mis en lumière des failles de sécurité dans la conception du réacteur à eau pressurisée. Une sécurité supérieure était très importante pour Weinberg : pour lui, un réacteur à sels fondus qui utilisait du thorium comme combustible offrirait des avantages considérables par rapport aux modèles à eau légère. En tant que liquide de refroidissement, les sels fondus à pression atmosphérique résistent à des températures beaucoup plus élevées et réduisent les contraintes mécaniques sur la cuve du réacteur. En tant que combustible, le thorium ne peut pas être utilisé pour fabriquer des armes utiles ; dans un réacteur, il peut générer du nouveau combustible à l’uranium qui est consommé pour produire de l’énergie.

Les innovations de Weinberg se sont étendues au-delà des réacteurs à sels fondus. Le travail sur la sécurité à Oak Ridge a influencé la création du réacteur à lit de boulets refroidi au gaz à haute température fonctionnant à l’Université de Tsinghua en Chine. Et les nouvelles centrales nucléaires en cours de construction en Géorgie intègrent des fonctionnalités de sécurité passive. Le réservoir annulaire d’eau sur le toit d’un réacteur AP1000 de Westinghouse peut refroidir un réacteur non alimenté pendant trois jours après un arrêt. Le réacteur mPower de Babcock & Wilcox continue en refroidissement passif pendant trois jours sur batterie. Et le réacteur plus petit de NuScale, financé par le ministère américain de l’Énergie, continue indéfiniment avec un refroidissement à l’air après l’évaporation de l’eau dans son réservoir.

Mais l’obsession de Weinberg pour la sécurité a fortement déplu à certains de ses collègues. Chet Holifield, le président du Comité mixte sur l’énergie atomique de 1970 était scandalisé par les efforts combinés de Weinberg et des sénateurs Howard Baker et Edmund Muskie pour établir un laboratoire national de l’environnement à Oak Ridge. Holifield « ne voulait pas que les laboratoires nucléaires soient contaminés par le mouvement écologiste », a rappelé Weinberg. Holifield lui a dit, « Alvin, si vous êtes préoccupé par la sécurité des réacteurs, alors je pense que c’est le bon moment pour vous de quitter l’énergie nucléaire. » Weinberg a été viré peu de temps après. Six ans plus tard, la fusion du cœur de Three Mile Island est survenue.

3.
À l’automne 2013, quatre des plus grands scientifiques mondiaux du climat, parmi lesquels l’ancien scientifique de la NASA James Hansen, ont envoyé une lettre ouverte aux écologistes, demandant qu’ils inversent leur opposition à l’énergie nucléaire afin de sauver le climat. La lettre a été traitée comme une nouveauté dans les médias. Des spécialistes de l’environnement – pour l’énergie nucléaire ? Comme c’est étrange.

Et pourtant, il y avait le Dr Weinberg, l’un des scientifiques les plus respectés de l’Amérique, se faisant l’avocat de l’énergie nucléaire en faveur du climat près de 40 ans avant la lettre ouverte et une décennie et demie avant que Hansen déclare aux journalistes que ses collègues scientifiques devaient cesser leur baratin et reconnaître que les humains changeaient le climat.

Climat et énergie, pour Weinberg et beaucoup après lui, sont les deux faces d’une même médaille. Après un passage en tant que directeur de l’Office américain de recherche et de développement énergétiques en 1974, Weinberg avait réussi à fonder l’Institut pour l’analyse de l’énergie (IAE) aux Universités Associées d’Oak Ridge, soucieux de l’avenir de l’énergie. IAE a inventé le concept d’analyse du Taux de Retour Énergétique que nous utilisons aujourd’hui.

En 1976, à l’AIE Weinberg a prédit que « … la concentration atmosphérique de 375-390 ppm pourrait bien être une plage de seuil à partir duquel le changement climatique dû au CO2 sera séparable des fluctuations climatiques naturelles … Les conséquences d’une augmentation de cette ampleur de CO2 dans l’atmosphère, indiquent qu’il est prudent de procéder avec caution dans l’utilisation à grande échelle de combustibles fossiles. »

L’avis de Weinberg sur l’énergie était en contraste marqué avec les points de vue des antinucléaires qui ont fait valoir que les personnes pauvres à travers le monde ne tireraient aucun avantage d’une électricité fiable et bon marché. « Donner à la société une énergie abondante et pas chère » pour prendre la célèbre phrase du professeur de Stanford Paul Ehrlich en 1975, « équivaudrait à donner une mitrailleuse à un enfant imbécile. » Weinberg a farouchement soutenu le contraire : les sociétés à faible énergie sont beaucoup moins libres et « souffrent probablement de plus de pollution de l’air et de l’eau et des milieux urbains que les sociétés à haute énergie. » Plus, pas moins, d’énergie était au centre du bien-être.

Une nouvelle génération d’ingénieurs préoccupés par le changement climatique redécouvre Weinberg et son design. La société TerraPower de Bill Gates étudie les réacteurs à sels fondus. L’ingénieur du MIT Leslie Dewan a co-fondé Transatomic Power, qui utilise une conception de RSF. Et l’ancien employé de la NASA Kirk Sorensen a publié les documents originaux de R&D d’Oak Ridge sur l’Internet, et a fondé la société Flibe Energy.

La technologie a suscité un intérêt mondial. L’ancienne écologiste antinucléaire Baronesse Bryony Worthington a aidé à fonder la Fondation Alvin Weinberg basée à Londres, pour « re-catalyser la recherche, le développement et le déploiement des RSF déjà conçus, construits et éprouvés par Alvin Weinberg … pour lutter contre le changement climatique. » Et un article écrit par Robert Hargraves dans le journal American Scientist en 2010 a suscité le projet de développement de $ 350 000 000 de l’Académie des Sciences Chinoise, annoncé en 2012.

Avec la lettre ouverte des scientifiques du climat, avec un nombre croissant d’écologistes qui prônent l’énergie nucléaire, avec un nombre croissant de philanthropes comme Bill Gates et Paul Allen qui investissent dans la prochaine génération de nucléaire, l’altruisme qui a initialement motivé les scientifiques et les ingénieurs nucléaires revient enfin pour redéfinir l’énergie nucléaire. « Ce qui rendait Weinberg unique, » a déclaré Alexander Zucker, professeur de physique et collègue de Weinberg, « était sa profonde préoccupation pour le bien-être de l’homme. Il n’a jamais cessé d’y penser. »

 

Cet article est une traduction de l’article écrit par Robert Hargraves et publié le sur le site internet du Breakthrough Institute, le 5 février 2014. Robert Hargraves est l’auteur du livre « Thorium : energy cheaper than coal« 

Publicités

Le thorium, moins cher que le charbon ?

Pour un politicien ou fonctionnaire qui doit faire des choix difficiles avec un budget serré, quand il s’agit d’établir la politique énergétique d’un pays, les priorités sont :

1. Fiabilité
2. Coût
3. Environnement

ip7e6g

Un rapport de novembre 2012 du World Resources Institute a établi que 1199 centrales à charbon sont actuellement en construction ou en projet dans le monde.

Screen Shot 2013-03-27 at 21.43.06

Cliquez pour la carte interactive

Le charbon est la source d’énergie la plus polluante. Si cette filière se développe aussi vite, c’est parce que le coût par kilowatt-heure n’est pas cher. Les lois du marché le garantissent.

————–

L’industrie nucléaire mondiale s’est déployée dans les années 1950/60 avec une technologie maitrisée, mais fragile – le réacteur à eau pressurisée (REP). Aux débuts de la première ère nucléaire, le fait que ce type de machine a un rendement inférieur à 1% n’était pas si important – la fission d’un seul atome d’uranium émet environ un million de fois plus d’énergie que la combustion d’hydrocarbures. 1 million x 1% = toujours 10 000 fois mieux !

Mais la technologie nucléaire est complexe, et l’investissement capital pour construire une centrale avec un REP est important. Le retour d’expérience suite aux incidents de sureté avec cette technologie a rendu cet investissement de plus en plus onéreux, jusqu’au point où aujourd’hui elle n’est pas très compétitive comparée aux centrales à combustibles fossiles.

Pour se déployer massivement, une nouvelle technologie d’énergie propre doit être moins chère que le charbon.

Alors prenons la technologie de la fission nucléaire, qui produit aujourd’hui 13% de l’électricité mondiale, et changeons UNE chose. Passons d’un combustible solide à un combustible liquide.

Quel liquide utiliser alors ? Et bien après un peu de recherche, il se trouve que les sels de fluorure fondus offrent les meilleures caractéristiques pour une utilisation dans un réacteur nucléaire homogène.

Et il se trouve aussi que le cycle de combustible au thorium est le mieux adapté pour un réacteur à sels fondus.

Wow ! C’est quand-même radicalement différent ! Combien ça coûte ?

L’état de développement des réacteurs à sels fondus ne permet pas aujourd’hui de donner une réponse précise à cette question. Mais pour Daniel Heuer, Directeur de recherche, Laboratoire de physique subatomique et de cosmologie (Grenoble), dans un entretien récent avec ParisTech Review :

“Nous avons l’espoir que le réacteur que nous concevons serait moins cher qu’un réacteur à eau pressurisée, ce qui pourrait se révéler décisif au moment des arbitrages politiques et industriels. À titre personnel, je pense d’ailleurs que c’est la seule solution pour passer à la génération IV : avoir un réacteur qui soit moins cher qu’un réacteur à eau pressurisée. Cela reste à vérifier, et c’est l’une des raisons pour lesquelles il est important de continuer à travailler.”

Cette technologie peut-elle être non seulement moins chère qu’un REP mais aussi moins chère que le charbon ? Si aujourd’hui nous ne pouvons pas donner un prix précis pour une centrale avec réacteur à sels fondus, quels sont les facteurs qui la rendraient moins chère ?

Regardons d’abord le coût du réacteur :

FONCTIONNEMENT A FAIBLE PRESSION

 

Dans un réacteur à eau pressurisée (REP) comme un EPR, l’eau de refroidissement à 300°C est maintenue en état liquide par une pression de 150 atmosphères. En cas d’accident avec fuite d’eau, elle se transforme en vapeur. Le bâtiment réacteur est conçu pour éviter la dispersion de cette vapeur radioactive dans l’environnement. Dans un EPR, il dispose d’une double enveloppe de confinement d’1,30m d’épaisseur chacune. Un réacteur à sels fondus fonctionne à faible pression. Son bâtiment réacteur sera plus petit, moins épais et beaucoup moins cher à construire.

Cuve

Image : AREVA

La cuve d’un REP et les tuyaux de circulation sont en acier épais, pour résister à la pression. Pour la cuve d’un EPR les murs ont une épaisseur de 20 à 30 cm, et il pèse 420 tonnes. Une seule entreprise est capable de fabriquer ce genre de composant – le “Japan Steel Works” (Japon). A part le coût exorbitant, la faible capacité de production de ce genre de composant est aujourd’hui un frein au développement de l’industrie nucléaire. Dans un réacteur à sels fondus une épaisseur de quelques centimètres est suffisante.

UNE STABILITE THERMIQUE INTRINSEQUE

Barres de commande

Dans un REP la puissance de réaction est contrôlée par des barres de commande. Celles-ci absorbent des neutrons, ralentissant la réaction en chaîne. Quand on monte une barre, moins de neutrons sont absorbés et la réaction accélère; quand on descend une barre, la puissance de réaction diminue.
Dans un réacteur à sels fondus, la puissance est contrôlée par l’expansion du combustible liquide. Au dessus du cœur, il y a une sorte de “trop-plein”, physiquement écarté de la région où a lieu la réaction en chaîne.

stabilité thermique

 Quand le réacteur chauffe, le liquide se dilate et fait remonter le niveau dans le trop-plein. Il y a donc moins de matière fissile dans le cœur et la réaction est ralentie. Quand la température descend, le liquide se contracte et le niveau dans le trop-plein descend. Avec plus de matière fissile dans le cœur, la réaction en chaîne reprend. Une température de fonctionnement stable est atteinte rapidement. Ce mécanisme, qui simplifie considérablement la conception du réacteur, est possible uniquement avec un combustible liquide.

EVACUATION PASSIVE DE LA CHALEUR RESIDUELLE DE DESINTEGRATION

Générateurs

Images : AREVA

Quand on arrête un réacteur nucléaire, les produits de fission continuent de se désintégrer et à produire de la chaleur. C’est ce phénomène qui a provoqué les accidents majeurs de fusion de cœur à Three Mile Island et Fukushima. Dans un REP la circulation de l’eau de refroidissement est “garantie” par des générateurs diesel de secours. Dans un réacteur à sels fondus, l’état liquide du combustible permet de le vidanger dans des réservoirs où l’évacuation de chaleur se fait passivement. La forme de ces réservoirs étant différente de celle du cœur, l’atteinte d’une masse critique et donc le déclenchement d’une réaction en chaîne sont impossibles.

UNE MATIERE STABLE ET INERTE

Auxiliaires

Images : AREVA

Les sels fondus sont des matières stables et inertes; ils ne réagissent pas avec l’air ou l’eau. Le fluorure de lithium par exemple est le deuxième composé chimique le plus stable connu (après l’oxyde de béryllium). Une fusion du cœur est impossible – le combustible est déjà liquide. Même en cas d’accident grave avec un réacteur à sels fondus avec fuite de combustible liquide radioactif, les hasards et les risques pour l’environnement sont beaucoup moins importants qu’avec un REP. Un meilleur niveau de sécurité intrinsèque réduira le coût du réacteur – par exemple les systèmes d’absorption d’hydrogène d’un réacteur EPR ne seraient plus nécessaires.

RECHARGEMENT ET RETRAITEMENT EN LIGNE

Rechargement

Avec un combustible liquide, il n’y a pas besoin d’arrêter le réacteur tous les 18 mois pour rechargement, déchargement et repositionnement du combustible, ce qui grève le rendement de la centrale. Les machines qui font la manutention des assemblages de crayons de combustible ne seraient plus nécessaires.

Retraitement_en_ligne
Le retraitement des déchets est facilité par l’état liquide du combustible. Un retraitement chimique sur site sépare les produits de fission du mélange de sels, combustible et actinides. Ces derniers sont renvoyés dans le réacteur pour fissionner et produire de l’énergie, ce qui augmente le rendement et réduit la production de déchets.

Retraitement

Pour les combustibles solides, il est nécessaire de transporter tout le combustible irradié dans une usine dédiée où des processus complexes et chers les transforment, pour retraitement chimique … en liquides !

UN MEILLEUR RENDEMENT THERMIQUE

Rendements

Image : K Sorensen

Avec une température de fonctionnement de 300°C, un REP est capable de transformer 33% de sa chaleur en électricité. Les sels fondus sont liquides sur une plage de 1000°C, et avec une température de fonctionnement autour de 700°C, on peut atteindre un rendement proche de 50%.

Cycle Brayton fermé

Image : R Hargraves

Un réacteur à sels fondus peut être couplé à un système de conversion de puissance Brayton à cycle fermé, à hélium ou CO2. Ces systèmes sont beaucoup moins grands qu’une turbine à vapeur, ce qui permettrait également de réduire la taille du hall du groupe turbo-alternateur.

REFROIDISSEMENT A L’AIR

Tour

Pour des réacteurs à sels fondus de puissance moyenne, le meilleur rendement serait un facteur qui permettrait d’envisager un refroidissement à l’air du cycle de conversion de puissance, évitant la contrainte d’une installation près d’une source d’eau.

FAIBLE TAILLE

La capacité thermique des sels fondus est supérieure à celle de l’eau dans un REP ou du sodium dans un Réacteur à Neutrons Rapides (RNR). Les géométries du cœur et des boucles de transfert de chaleur peuvent être plus compactes, réduisant les coûts de matières pour leur fabrication.

url-1

Il serait possible de fabriquer des réacteurs de puissance moyenne en usine et de les transporter par camion pour installation dans une centrale. L’effet volume serait un facteur important pour réduire les coûts. Avec un nombre plus important de réacteurs de puissance moyenne, les coûts de distribution d’électricité seraient réduits.

—————

Cela fait déjà 8 raisons de penser qu’un réacteur à sels fondus serait moins cher à concevoir et à construire qu’un REP. Pour ceux qui auraient encore des doutes, regardez cette vidéo AREVA sur EPR en vous demandant combien ça coûte. Regardons maintenant les différences au niveau du cycle de combustible, qui influencent le coût de l’énergie :

FABRICATION DU COMBUSTIBLE SOLIDE ELIMINEE

Fabrication Combustible

Pour fabriquer le combustible solide d’un REP, l’oxyde d’uranium en poudre est comprimé en pastilles cylindriques qui sont cuites à 1700°C pour les rendre compactes et solides. On fabrique avec précision une gaine de zirconium pour entourer les pastilles de combustible. On fait un tri manuel des pastilles selon leur contenu en uranium 235 fissile pour optimiser leur position dans la gaine et donc dans le réacteur. On insère les pastilles dans la gaine pour former un crayon de combustible, qui est rempli d’hélium et fermé par un bouchon, avec une étanchéité parfaite. Ces crayons sont regroupés dans un assemblage fabriqué, avec précision, de zirconium et d’acier inoxydable.

En regardant cette vidéo AREVA, on comprend bien pourquoi la fabrication d’un combustible solide coûte aussi cher. Tous ces processus sont éliminés avec un réacteur à combustible liquide.

LE THORIUM EST ABONDANT ET PAS CHER

Sphere Thorium

Image : R Hargraves

Une tonne de thorium suffit pour alimenter un réacteur à sels fondus qui produit 1000MW d’électricité, pendant un an. Le coût d’une tonne de thorium est de l’ordre de 250 000€, soit 0,00003€ / kWh – négligeable !

La concentration moyenne du thorium dans la croûte terrestre est d’environ 12 parties par million. Les réserves connues sont suffisantes pour alimenter les besoins énergétiques de la planète pendant plusieurs millénaires. On peut vraiment parler d’énergie renouvelable.

ENRICHISSEMENT D’URANIUM REDUIT

Enrichissement

Image : World Nuclear Association

Un réacteur à sels fondus a besoin de matière fissile pour démarrer, le thorium étant un combustible fertile qui a besoin de l’impact d’un neutron pour se convertir en uranium 233. Cette matière fissile peut être de l’uranium enrichi. L’enrichissement de l’uranium par centrifugeuse est un processus qui coûte cher, mais qui est nécessaire pour le démarrage initial uniquement.

MOINS DE DECHETS

REP vs RSF

Image : R Hargraves

 

Un réacteur à sels fondus produit moins d’un pour cent d’isotopes transuraniens radioactifs, par rapport à un REP. C’est la production de chaleur de ces isotopes qui est le principal inducteur de coût pour les sites de stockage des déchets radioactifs en couche géologique profonde.

—————–

Comme nous avons noté au début, dans le monde politique le coût d’une source d’énergie est bien plus important que les considérations de l’environnement. Pour démontrer que l’énergie du thorium sera moins chère que le charbon, il faut lancer un avant projet de réacteur à sels fondus, associé à une étude économique objective et impartiale. En France, le CEA serait bien placé pour réaliser de telles études, mais il faudrait qu’il soit ainsi missionné par l’Etat. Si vous soutenez cette démarche, envoyez le lien pour cet article (http://wp.me/p2oTUJ-4M) à votre élu. C’est aussi votre facture d’énergie qui est en jeu…

Facture EDF

Article inspiré par le livre de Robert Hargraves : Thorium energy cheaper than coal

TECTC

 

Energie du Thorium – ce que nous devons faire

Cette semaine en France sera marquée par deux événements importants : un colloque et un débat. Pour le débat, au niveau national, il est promis que « L’énergie dans son ensemble et dans toutes ses dimensions et toutes les énergies seront dans la réflexion« . Au colloque, on parlera « des centrales de 4ième génération, de mini centrales, et de la filière à thorium. »

Que faut-il faire en France pour promouvoir le développement de l’énergie du thorium ? Si Alvin Weinberg, pionnier des réacteurs à sels fondus, était encore vivant, que dirait-il ?

alvin-weinberg11

Alvin Weinberg

 

Voici quelques suggestions :

STRATEGIE

  • Faire évoluer la stratégie politique française sur les réacteurs de génération 4, établie en 2007/2008, en vue des résultats de la recherche française et internationale.
  • Faire accepter que le nucléaire de demain sera différent du nucléaire d’hier et du nucléaire d’aujourd’hui.
  • Considérer les réacteurs à sels fondus comme une opportunité plutôt qu’une menace pour l’industrie française.
  • Trouver un nouveau modèle économique qui permettra à l’industrie nucléaire de développer des combustibles nucléaires liquides.
  • Chercher des partenariats internationaux pour partager le coût et l’effort de développement de la technologie.

INVESTIR

  • Augmenter considérablement le budget de recherche français sur les réacteurs à sels fondus.
  • Lancer une étude économique indépendante pour mieux établir le coût de développement des réacteurs prototypes, le coût potentiel pour des réacteurs industriels en Euros / Watt, et le coût de l’énergie ainsi produite.
  • Missionner le CEA avec la création d’un ou plusieurs prototypes de réacteur à sels fondus, à l’instar du programme de la Chine. Créer le budget nécessaire à la réussite du projet.
  • Missionner l’ASN avec la préparation de son futur rôle de régulateur de l’industrie de production et d’exploitation des réacteurs à sels fondus.
  • Lancer un programme de recherche sur la production de carburants de synthèse à partir de la chaleur nucléaire.

PROMOUVOIR

  • Créer une association sans but lucratif pour la promotion de l’énergie du thorium en France.
  • Proposer à IThEO de tenir la conférence internationale ThEC13 en France.

EDUQUER

  • Eduquer les acteurs politiques sur les avantages pour la France de cette technologie.
  • Eduquer le public sur l’énergie nucléaire en général, et sur les possibilités offertes par les réacteurs à sels fondus.
  • Former sur la technologie des réacteurs à sels fondus dans les écoles scientifiques et les écoles d’ingénieurs, dans les universités et dans les lycées.

COMMUNIQUER

  • Refaire l’article du CEA sur le thorium et les réacteurs à sels fondus.
  • Produire un documentaire sur une des chaînes de France Télévision.
  • Traduire en français les meilleures supports écrits (livres, articles, papiers scientifiques…) dans d’autres langues.
  • Doubler en français les meilleures vidéos du web sur le thorium.

Le réacteur à sels fondus a le potentiel d’être la technologie dominante du 21ième siècle. Comme le résume R. Martin dans son livre « Super Fuel » : « Les obstacles à la création d’une économie basée sur l’énergie du thorium ne sont pas technologiques ou même économiques. Ils sont politiques et perceptuels. Si on ne le fait pas, ce sera parce qu’on l’a choisi – pas parce que c’était impossible ».

Le thorium nous donne de l’espoir. Espoir que la technologie peut nous sortir des problèmes que la technologie a créés. Espoir que la terre peut nous fournir une source d’énergie qui ne détruira pas les systèmes et les équilibres qui soutiennent la vie. Espoir qu’il est possible de résoudre le plus grand problème de notre siècle – le réchauffement climatique.

R. Martin dit aussi : « Pendant des millions d’années, le thorium était là, attendant le bon moment, les bonnes circonstances, et les bons esprits pour le mettre en avant et lui permettre de fournir pendant des millénaires une énergie propre, sûre et abordable. Alvin Weinberg avait raison. Le moment est maintenant, la technologie existe, l’environnement économique est favorable, et le besoin est urgent. Le choix est le nôtre. »

Sources : Superfuel, Richard Martin; Thorium, energy cheaper than coal, Robert Hargraves