Une rupture numérique ?

Hier, la Société Française d’Énergie Nucléaire a tenu sa convention annuelle, sur le thème « Le nucléaire accélère sa transformation numérique ».

Convention SFEN 2017

Image : SFEN (via Twitter)

Dans son introduction, le président de la SFEN Christophe Béhar a rappelé que le numérique n’est pas une fin en soi, mais un levier puissant qui permettra à la filière nucléaire d’aller plus vite, de manière intégrée, et de revoir ses processus.

Xavier Ursat, Directeur Exécutif d’EDF en charge de la Direction Ingénierie et Projets Nouveau Nucléaire, considère que le nucléaire a « pris du retard » par rapport aux autres industries comme l’automobile ou l’aéronautique. Il admet que le nucléaire est aujourd’hui questionné sur sa compétitivité, sur sa capacité à tenir les coûts et les délais : « L’industrie continuera à réussir si elle tient ses promesses. »

François Gauché, Directeur de l’Énergie Nucléaire au CEA, est revenu sur l’histoire du développement des processus numériques depuis 1948, sur les outils de simulation et de calcul tels que les méthodes Monte-Carlo d’analyse neutronique. L’augmentation de la puissance numérique permet de progresser dans la finesse des calculs.

Bernard Fontana, Chief Executive Officer d’AREVA NP a insisté sur la nécessité d’améliorer le coût d’exploitation de 30% aux Etats-Unis d’ici 2020, pour éviter la fermeture de centrales face à la concurrence du gaz de schiste.

Est-ce raisonnable de compter sur les technologies numériques pour réduire autant le coût du nucléaire ? Le besoin de production d’une énergie décarbonée à faible coût est plus pressant que jamais, et les enjeux sont de taille. Face à la situation critique dans laquelle elle se trouve, il faut que l’industrie fasse preuve d’un peu plus d’imagination.

La notion de technologie de rupture, une innovation qui porte sur un produit ou un service et qui finit par remplacer une technologie dominante sur un marché, a été introduite par Clayton M. Christensen dans son livre « Le dilemme de l’innovateur : quand les nouvelles technologies font disparaître les grandes entreprises« , publié en 1997. Ce livre décrit comment les industries établies, des gros paquebots très focalisés sur les besoins de leurs parties prenantes (clients, actionnaires, employés…), arrivent très rarement à changer de cap.

Par opposition aux technologies de rupture, les technologies de continuité ou d’amélioration continue procèdent par améliorations et incréments graduels successifs des performances de la technologie actuelle. Investir dans le numérique pour améliorer des processus dans la technologie des réacteurs à eau pressurisée, comme la numérisation de documents ou la gestion du cycle de vie des installations, tombe dans cette catégorie.

Il y a de solides raisons de penser que changer le combustible nucléaire d’un solide à un liquide à base de sels fondus pourra être une technologie de rupture. Nous savons que :

  • la capacité des sels fondus à confiner chimiquement des produits de fission
  • l’exploitation à pression atmosphérique
  • le fort mécanisme de contre-réaction d’un combustible liquide
  • la stabilité chimique des sels
  • la haute température de fonctionnement
  • le meilleur taux de combustion de la matière fissile
  • les nombreuses possibilités d’architecture et de modularité
  • la capacité de suivi de charge rapide
  • (…etc…)
…sont autant de facteurs qui devraient permettre de baisser le coût en capital et le coût moyen actualisé pour la production d’énergie d’une centrale nucléaire équipée de cette technologie. Le numérique est également un levier puissant dans ce domaine, pour démontrer la faisabilité de nouveaux concepts :
Transients MSFR

1. Modélisation par couplage neutronique / thermo-hydraulique d’effets transitoires dans un réacteur MSFR

Tube SSR v2

2. Simulation ANSYS / Fluent du flux laminaire de convection de sels fondus dans le tube de combustible d’un réacteur à sels stables (diamètre du tube agrandi sur l’image)

Turbulences TU Delft

3. Modélisation de vortex Taylor dans un milieu à sels fondus

Comment réagir face à une technologie de rupture comme la fission liquide ? Christensen suggère que la seule stratégie de survie pour des grandes entreprises dans cette situation est de créer une filiale start-up, indépendante, agile, avec des faibles coûts de structure, qui peut prendre des risques.

En 1958 Framatome était une start-up, qui a rassemblé la propriété intellectuelle des réacteurs à eau pressurisée de Westinghouse (désormais en faillite) et l’excellence de l’industrie française dans la fabrication de récipients sous pression. Elle a grandi pour devenir l’énorme entreprise multinationale que nous connaissons aujourd’hui sous le nom AREVA.

Nous sommes à 23 jours du premier tour de l’élection présidentielle. Dans le nouveau quinquennat, la France a tous les atouts pour renouer avec cet esprit de start-up et utiliser les leviers du numérique pour engager une innovation de rupture dans le nucléaire. Lire la suite

Publicités

Quel réacteur à sels fondus ?

La fission liquide présente tellement d’avantages que la question n’est pas si on devrait la développer, mais quel concept il faut retenir.

Quel RSF

Ca ressemble à une nouvelle industrie naissante, non ?

Produire de l’énergie nucléaire avec un combustible liquide, au lieu des technologies actuelles qui utilisent toutes des combustibles solides, nous permet d’envisager l’aube d’une nouvelle ère pour la fission nucléaire, avec une technologie de rupture plus sûre, moins chère, fiable, durable et propre – faisons la fusion du cœur AVANT de le mettre dans le réacteur !

Il est important de comprendre que la fission liquide est une famille de technologies, leur difference étant dans l’état de la matière de leur combustible. En modifiant des facteurs tels que choix et chimie des sels fondus, architecture, géométrie et taille du réacteur, vitesse des neutrons, traitement des déchets, refroidissement etc., il est possible, comme pour les combustibles solides, d’imaginer des dizaines de concepts différents.

Branches technologiques

Quelques exemples de branches technologiques de l’énergie nucléaire. La fission liquide est l’ensemble des branches vertes.

 Alors quelle branche verte faut-il développer ?

Grande question…

Dans la communauté internationale de la fission liquide, chaque personne ou groupe apporte une réponse un peu différente à cette question, en fonction de ses valeurs, sa compréhension des exigences et ses idées sur les solutions possibles.

Cependant, dans la façon de penser à ces systèmes d’énergie du futur, on distingue aujourd’hui deux grandes écoles, qu’on appelera ici l’école « Académique » et l’école « Start-up ».

L’école Académique est en grande partie issue des objectifs fixés pour les concepts développés dans le cadre du Forum International Génération 4 :

  • améliorer la sûreté nucléaire,
  • améliorer la résistance à la prolifération – en brûlant les stocks de plutonium,
  • minimiser les déchets – en recyclant et transmutant les actinides issus des réactions nucléaires,
  • optimiser l’utilisation des ressources naturelles,
  • diminuer les coûts de construction et d’exploitation des réacteurs.

Ce sont des objectifs pour satisfaire les clients de l’énergie, et plus largement pour refaire de l’énergie nucléaire une technologie socialement acceptable. Et dans ce domaine, la France peut se réjouir d’être un vrai spécialiste, avec le réacteur MSFR développé par le CNRS à Grenoble, qui a été sélectionné par le Forum GenIV en tant qu’hypothèse centrale pour le concept de réacteur à sels fondus au niveau international. La Commission Européenne a souligné l’importance de cet effort avec l’allocation au mois de février 2015 de plus de €3 millions pour approfondir les aspects de sûreté de ce concept, avec le programme SAMOFAR.

Albert Einstein a dit :

« Tout devrait être rendu aussi simple que possible,

mais pas plus simple. »

Un problème avec l’école Académique est justement que les objectifs sont un peu trop simples. Pour atteindre les objectifs, tout à fait louables, d’optimiser des facteurs tels que durabilité et déchets, il y a une tendance à orienter les choix technologiques sur des solutions qui n’existent pas encore et qui demandent un effort considerable de recherche et développement.

Ecole académique

Avec la technologie EPR en ligne médiane, où se situent les objectifs pour l’école « Académique » ?

La technologie nucléaire est difficile à financer – un développement sérieux de la fission liquide coûtera des centaines de millions d’euros (voire quelques milliards). Pour un investisseur, que ce soit un gouvernement ou une entreprise privée :

  • Effort de R&D important = Risque technologique
  • Risque technologique = délai de commercialisation & coût de développement importants

Risque, temps, coût. La minimisation de ces trois est l’objectif de tout investissseur. Un nouveau produit ou technologie obtient le financement nécessaire à son développement quand un équilibre est trouvé qui satisfait aux exigences de ses clients ET de ses investisseurs.

L’école « Start-up » de la fission liquide voit les choses différemment. Ici, la question est plutôt : Quel est le meilleur réacteur à sels fondus qu’on peut concevoir maintenant ? Avec :

  • Uniquement des technologies éprouvées et disponibles sur étagère
  • L’architecture et la conception la plus simple possible
  • Pas de nouveaux matériaux
  • Un cycle de combustible connu
  • Investissements chiffrés et maîtrisés
  • Production en série, modularité et fabrication des modules en usine
  • Plusieurs marchés cibles (chaleur industrielle, dessalement, hydrogène, carburants de synthèse…), pas uniquement l’électricité

La question étant posée différemment, la réponse est forcément différente aussi. Ce type de technologie serait moins performant en termes de durabilité et déchets (tout en restant bien supérieur à une technologie existante de réacteur à eau pressurisée comme un EPR), mais avec moins de risque technologique et une maîtrise des investissements serait bien plus intéressant pour un investisseur.

Ecole start-up

Alors, à quelle école faut-il donner raison ? Quelle approche doit recevoir le financement important qu’il faut injecter dans la fission liquide ?

La réponse est : toutes les deux. Elles sont interdépendantes et complémentaires.

  • Les nouvelles start-ups ont besoin du monde académique en tant que partenaire pour leur recherche, pour former leur personnel et pour construire et communiquer la vision long-terme.
  • Le monde académique a besoin des start-ups pour orienter les études économiques, et pour faire le retour d’expérience de la conception, construction, validation et opération des réacteurs.

La fission liquide doit sortir du laboratoire pour rivaliser et s’imposer au centre des marchés d’énergie – concurrencer en matière de coûts et de commodité avec le charbon et le gaz naturel. La planète ne peut pas attendre 30 ans avant sa commercialisation. Mais la fission liquide doit également montrer à un public sceptique de l’énergie nucléaire une voie vers une énergie réellement durable et propre, son acceptabilité sociale étant essentielle à son succès.

Ce n’est pas chose facile que de démarrer une nouvelle voie dans la technologie de la fission nucléaire. Cela représente un changement de paradigme, un investissement important, un grand col à traverser… Mais dans la vallée de l’autre côté de ce col, l’herbe est bien plus verte.