De Charybde en Scylla

En avril 2015, Bill Gates a pris la parole à la conférence TED à Vancouver. Le titre de son « Talk » était : « La prochaine épidémie ? Nous ne sommes pas prêts. »

La vidéo est sous-titrée en français. Voici quelques extraits de la transcription :

« Quand j’étais gamin, la catastrophe dont on avait le plus peur était une guerre nucléaire. »

« Si quelque chose tue plus de 10 millions de gens dans les prochaines décennies, ce sera probablement un virus hautement contagieux plutôt qu’une guerre. Pas des missiles, mais des microbes. Une des raisons est que l’on a investi énormément dans la dissuasion nucléaire. Mais on n’a très peu investi dans un système pour arrêter les épidémies. Nous ne sommes pas prêts pour la prochaine épidémie. »

Nous connaissons tous désormais la suite. COVID-19 n’a pas encore tué 10 millions de gens, mais il aurait pu le faire. Et le coût pour éviter une mortalité dans les millions a été un ralentissement inédit des activités humaines dont nous n’avons pas encore commencé à mesurer les conséquences sociales et économiques.

Le 24 mars 2020 Gates a parlé par visio-conférence avec l’administrateur de TED Chris Anderson sur le thème « Comment nous devons répondre à la pandémie de coronavirus » :

Anderson Gates 2020-03-24

Anderson : « Il y a cinq ans, vous étiez sur la scène TED et vous avez donné cet avertissement effrayant que le monde était en danger, à un moment donné, d’une pandémie majeure. Les gens qui regardent ce discours maintenant, leurs cheveux se dressent à l’arrière de leur cou – c’est exactement ce que nous vivons. Que s’est-il passé, les gens ont-ils écouté cet avertissement ? »

Gates : « Fondamentalement, non. […] Le discours était pour dire : nous ne sommes pas prêts pour la prochaine pandémie, mais en fait, il y a des progrès dans la science tels que, si nous mettons des ressources en face, nous pouvons être prêts. Malheureusement, très peu a été fait. »

Peut-être qu’une des conclusions à tirer de l’épisode COVID-19 est qu’il faut écouter Bill Gates.

Dans quelques années, cette période étrange sera derrière nous. Un vaccin sera disponible, l’activité aura repris, et on peut espérer que la coopération mondiale aura permis de mettre en place des mesures bien plus efficaces pour lutter contre la prochaine épidémie. Nous serons tous contents quand ce sera fini.

De Charybde en Scylla 2

« Je serai content quand ce sera fini ». (Raf Schoenmaekers
@komkomdoorn)

Mais le problème du réchauffement climatique sera toujours là. L’accumulation des gaz à effet de serre dans notre atmosphère ne s’est pas arrêté quand nous avons diminué notre activité et elle reviendra rapidement aux niveaux de 2019 « à la rentrée » quand nous retrouverons une vie plus « normale ». Les impacts du changement climatique sur les humains et sur la nature seront d’un autre niveau et dureront bien plus longtemps que le petit souci de COVID-19 que nous vivons actuellement, et les solutions à ce problème demeurent inconnues. Nous tournons en rond.

Alors, que dit Bill Gates sur le climat ?

Il dit deux choses : premièrement, à côté de nos efforts pour obtenir plus d’énergie à partir des technologies dites « renouvelables », il va falloir beaucoup plus d’énergie nucléaire ; et deuxièmement, les technologies d’énergie nucléaire actuellement disponibles sont trop chères :

« Toute l’industrie nucléaire fabrique aujourd’hui un produit trop coûteux et dont la sûreté, même si elle est en fait assez bonne, dépend trop d’opérateurs humains.

Ainsi, l’industrie nucléaire ne survivra que s’il y a une nouvelle génération dont l’économie et la conception en matière de sûreté intrinsèque sont bien meilleures que tout ce qui existe actuellement.

Les réacteurs d’aujourd’hui ne sont pas économiques. Ignorez tout le reste. Donc l’industrie nucléaire va disparaître, et c’est vrai à l’échelle mondiale, à moins qu’il y ait un nouveau design. »

L’ entreprise TerraPower dont Gates est président travaille sur un concept de réacteur à sels fondus appelé MCFR (pour Molten Chloride Fast Reactor). Ce concept, étrangement similaire à celui étudié en France par le CNRS depuis 20 ans, est désormais considéré comme étant prioritaire chez TerraPower.

MCFR Terrapower

Cette fois-ci, Bill Gates sera-t-il écouté ? En tout cas, c’était encourageant de voir le PDG d’EDF Jean-Bernard Levy dans son bureau le 12 janvier 2020 pour une discussion sur les technologies de nucléaire avancé :

Chez EDF, la politique jusqu’ici sur les réacteurs à sels fondus est d’attendre de voir ce qui se passe chez les autres, puis d’acheter la technologie si ça marche. Dans le tableau ci-après ça correspond aux cases numéro 2 ou 4 :

On y va ça marche

Au stade où nous en sommes, personne ne sait si les réacteurs à sels fondus seront un succès commercial, s’ils permettront de répondre aux espoirs d’une énergie nucléaire plus sûre, moins chère que les énergies fossiles, permettant d’accéder aux marchés de la chaleur et des transports, au-delà de celui de l’électricité.

Si la technologie est un flop, la politique française nous positionnera dans la case 4, et tout le monde pourra se féliciter de la prudence collective qui a permis d’économiser les quelques dizaines de millions d’Euros nécessaires au financement d’un avant-projet de recherche et développement.

Mais si ça marche …. ?

Dans ce cas, la France se retrouvera dans la case 2. Et là les choses vont commencer à se compliquer pour ceux qui auront insisté sur une politique d’autruche. Face à une technologie de rupture, le spectre des conséquences s’étend du coût pour acheter la propriété intellectuelle des pays et entreprises qui ont développé la technologie (s’ils souhaitent coopérer avec la France), jusqu’au balayage de la carte de toute l’industrie nucléaire française (3ème du pays), si ses concurrents se montrent moins coopératifs.

Alors ces coûts et conséquences doivent se mettre dans la balance par rapport aux cases 1 ou 3, où l’on utiliserait des ressources et expertises françaises (qui sont d’ailleurs plutôt disponibles suite à l’arrêt du projet ASTRID) pour explorer cette technologie de génération 4 dans le contexte français, tisser des liens avec la communauté internationale et apporter une pierre à l’édifice d’un futur système d’énergie mondial bâti en grande partie sur la fission nucléaire à base de combustibles liquides.

Nous savons que la technologie des réacteurs à sels fondus fonctionne : le programme MSRE au Laboratoire national d’Oak Ridge l’a démontré entre 1965 et 1969. Est-ce vraiment raisonnable de parier sur l’échec de son déploiement à une échelle industrielle ?

Demain soir, Emmanuel Macron s’adressera aux français pour faire un point d’avancement sur la crise du COVID-19, et pour évoquer le sujet délicat de la fin du confinement. Beaucoup de certitudes, de convictions ayant été balayées, certains lui demandent que le « monde d’après » tienne compte davantage des enjeux climatiques. Nous sommes en guerre, et monsieur Macron a une opportunité rêvée de changer la direction du pays en ce qui concerne la production d’énergie.

Que dira-t-il ?

Macron 2020-04-13

Dans cette période de libertés restreintes nous avons toujours le droit, le devoir même, de rêver.

Publicité

Une journée technique

Comment innover dans l’énergie nucléaire en France ?

Le thème pour la journée technique organisée par la Société Française d’Energie Nucléaire vendredi 1 décembre était la « place et évolution de l’énergie nucléaire dans le futur« . Quels sont les alternatifs aux grands Réacteurs à Eau Pressurisée comme l’EPR (ou EPR-NM) ?

La journée comprenait des présentations sur les trois technologies suivantes :

VCT

EDF a dévoilé des informations techniques sur leur petit réacteur modulaire (Small Modular Reactor – SMR). Avec une architecture intégrée et compacte, chaque réacteur aurait une puissance de 170 mégawatts électriques, logé dans une enceinte métallique de hauteur 15m et immergée dans un bassin d’eau pour assurer une sécurité passive. D’autres avantages seraient apportés par un bâtiment réacteur semi-enterré couvert par un tumulus de terre, contenant 4 réacteurs et permettant de mutualiser des ressources comme le bassin d’eau ou la salle de commande.

IMG_2680

Cette technologie fait désormais l’objet d’un avant-projet sommaire chez EDF, en partenariat avec le CEA, Naval groupe et Technicatome, qui doit déboucher dans 3 ou 4 ans sur une décision d’engager … ou non … son développement.

Mais le problème des petits réacteurs modulaires, c’est qu’ils sont petits.

Certes, la maîtrise française de la conception et l’exploitation des réacteurs à eau pressurisée permettra de développer cette technologie dans les années 2020, pour une commercialisation vers 2030. Certes, un petit réacteur modulaire sera moins cher que ses gros cousins qui constituent actuellement le parc français. Mais comme il sera environ 10 fois moins puissant qu’un EPR, pas sûr que les leviers économiques des petits réacteurs compensent la perte de valeur de cet effet d’échelle ! En tout cas, les experts économiques de l’I-tésé (Institut de Technico-Economie des Systèmes Energétiques) au CEA suivent l’affaire avec intérêt.

——————————————————————————–

Ensuite il y a ASTRID, le projet pour un démonstrateur de Réacteur à Neutrons Rapides au sodium (RNR-Na) développé par le CEA. Cette filière a l’avantage de présenter beaucoup de valeur : utilisation du stock français d’Uranium appauvri, fermeture du cycle de combustible, surgénération … avec les RNR sodium, l’énergie nucléaire serait assurée pendant des millénaires !

ASTRID

Dans l’avant-projet en cours, mené par un consortium d’entreprises françaises et internationales avec environ 600 personnes, il y a des discussions avec l’Institut de radioprotection et de sûreté nucléaire (IRSN), mais pas encore d’engagement formel avec l’Autorité de Sûreté Nucléaire (ASN). Cet avant-projet doit déboucher en 2019 sur une décision par les tutelles du CEA d’engager … ou non … le développement d’ASTRID.

Mais le problème des RNR sodium, c’est qu’ils sont chers.

Certes, la valeur offerte par cette filière est séduisante. Certes, la France maîtrise la technologie, ayant construit les réacteurs Rapsodie, Phénix et Superphénix, et elle a un grand retour d’expérience. Mais utiliser un caloporteur sodium avec un combustible solide, même si le danger de la pression est éliminé, présente un danger de réactivité chimique. Les inconvénients de ce concept sont identifiés et il est possible d’y remédier, mais les études économiques de l’I-tésé et d’autres sont claires : le principal enjeu de cette technologie est son coût.

Enjeux ASTRID

——————————————————————————–

Enfin, le concept de réacteur à sels fondus MSFR développé par le CNRS, qui se décline désormais en deux versions – un grand réacteur d’un Gigawatt, et un petit réacteur modulaire d’une puissance entre 100 et 300 Mégawatts. Les avantages de sûreté intrinsèques d’un combustible liquide avec des sels fondus chimiquement stables sont démontrés par les études de la petite équipe du CNRS, et apportent à la fois de la valeur et la possibilité d’une rupture dans le coût de l’énergie nucléaire.

MSFR

Il est déjà appréciable que la SFEN ait accepté d’inclure une présentation sur cette technologie dans leur journée technique. Le sujet est désormais incontournable dans toute discussion de la place et évolution de l’énergie nucléaire dans le futur, avec un intérêt international grandissant et le foisonnement d’entreprises start-up.

Pour les réacteurs à sels fondus, le temps est-il vraiment un problème ?

Quand le CEA parle des réacteurs à sels fondus, on pourrait conclure que les développements ne sont pas pour demain :

  • C’est un concept très innovant
  • Aucune construction d’un réacteur même prototype n’est actuellement lancée
  • Demanderait un processus de certification qui ne serait pas simple
  • Un certain nombre de difficultés techniques à résoudre en particulier dans le domaine de la chimie
  • Par contre c’est intéressant comme concept

Mais le CEA n’est pas un spécialiste dans ce domaine, ayant abandonné leur travail sur la technologie en 1983 en faveur des RNR sodium. Malheureusement, les économistes de l’I-tésé n’ont jamais chiffré un réacteur à sels fondus.

Les spécialistes dans d’autres pays disent que la technologie peut être déployée dans les années 2020, avec des architectures simplifiées par rapport au concept MSFR français. Le 7 novembre, l’Académie des Sciences de Chine et la province du Gansu ont signé un accord de coopération nucléaire pour un projet de réacteur à sels fondus à base de thorium, et visent un premier prototype de 2 Mégawatts en 2020.

Signature.jpg

En France, la communauté politique se pose actuellement de sérieuses questions sur le nucléaire. Est-ce une énergie de transition ou une énergie du futur ?

Si les réacteurs à sels fondus peuvent répondre aux attentes des clients de l’énergie nucléaire en termes de valeur, de coût et de temps, il serait temps d’y consacrer beaucoup plus de ressources.

 

Valeur vs Coût

La vie est pleine d’arbitrages. Que le choix soit majeur comme où habiter, ou mineur comme l’achat d’un produit au supermarché, nous pesons constamment la valeur de nos décisions contre leur coût.

La France a décidé dans les années 1970 de produire une grande partie de son électricité à partir d’énergie nucléaire. En 2015, 58 réacteurs à eau pressurisée dits de « génération 2 » ont produit 76,3% de son électricité. Même si un réacteur nucléaire est une machine très chère, l’énergie nucléaire a beaucoup de valeur – elle permet de produire de vastes quantités d’énergie en sécurité, de façon fiable 24h/24h, sans envoyer dans l’atmosphère du CO2 et d’autres polluants.

parc-nucleaire-francais

Pour mesurer subjectivement la valeur de l’énergie nucléaire, la quantité d’énergie produite est la première considération, mais les technologies qui permettent de gagner en sécurité, fiabilité, propreté et durabilité apportent aussi de la valeur.

Imaginons un graphique de valeur contre coût.

  • En rouge la partie avec faible valeur et coût élevé
  • En vert la partie avec valeur élevée et coût faible.

Plaçons la technologie actuelle des réacteurs nucléaires de génération 2 au milieu de ce graphique :

valeur-vs-cout-5

A partir de cet état des lieux, différentes options sont disponibles.

epr

EPR

On peut par exemple aller vers la technologie de génération 3 (ou 3+) comme le réacteur EPR actuellement en construction à Flamanville.

Cette technologie a de nombreux avantages en termes de sécurité par rapport à la génération 2, avec l’ajout de nouveaux systèmes. Un réacteur EPR est également plus puissant, avec une capacité de 1 650 MWe. La technologie a donc plus de valeur que la génération 2.

Mais la génération 3 est bien plus chère que la génération 2. Le planning du projet ayant été repoussé plusieurs fois, l’estimation pour le coût du réacteur Flamanville 3 est actuellement 10,5 milliards d’euros (soit 6,36 €/W).

astrid

ASTRID

Sinon, il y a l’option de la génération 4, où la France développe le projet ASTRID, qui a pour objectif de relancer la filière des réacteurs à neutrons rapides au sodium, suite aux réacteurs expérimentaux Rapsodie, Phénix et Superphénix. ASTRID est réputé être aussi sûr que les réacteurs de génération 3+, mais apporte de la valeur en fermant le cycle nucléaire pour apporter une vraie réponse au problème de la durabilité.

Dans les mots de monsieur Nicolas Devictor, chef du programme ASTRID au CEA :

« En France, toutes les parties sont d’accord pour dire qu’un réacteur à neutrons rapides refroidi au sodium sera toujours plus cher qu’un réacteur à eau pressurisée. Toujours. »

« Il y a un service par contre qui n’est pas le même. Un réacteur à neutrons rapides – c’est un service sur le cycle, sur la gestion des matières. C’est de l’indépendance énergétique en partie aussi dont on parle, parce qu’en France on a des stocks d’uranium importants. On a un stock de Plutonium significatif aussi. »

Donc ASTRID, comme la génération 3, c’est plus de valeur pour plus de coût.

Une autre option est disponible – celle des petits réacteurs modulaires.

prm

Petits réacteurs modulaires

Assemblés en usine et livrés à la centrale par chemin de fer ou camion, leur petite taille permet une réduction importante du coût, et un financement plus facile.

Mais avec une puissance typiquement entre 50MWe et 300MWe, il faut construire plusieurs réacteurs pour produire la même quantité d’électricité qu’un réacteur de génération 2. Donc cette technologie présente moins de coût pour moins de valeur.

Toutes ces options technologiques utilisent un combustible à l’état solide. Plaçons les sur notre graphique de valeur vs coût :

valeur-vs-cout-6

Toutes les technologies ont un seuil de coût minimum. Quand on choisit le concept de la technologie, on choisit aussi son seuil de coût. Le seuil de la fission solide empêche l’industrie nucléaire actuelle de quitter la zone jaune.

La vraie innovation, ce serait une technologie qui nous rapproche du smiley vert – plus de valeur pour moins de coût.

Et la fission liquide peut faire cela. Les technologies en développement de réacteurs à sels fondus ont un coût réduit à cause de leur sécurité intrinsèque.

valeur-vs-cout-3

De loin le plus grand avantage vient de la chimie des sels fondus. Quand les produits de fission sont créés dans un liquide ionique, ils sont enfermés dans ce liquide qui est chimiquement très stable. Les liaisons fortes entre les atomes les empêchent de sortir du liquide, donc le premier niveau de confinement est assuré par la chimie. On agit directement pour réduire le danger du système de réacteur.

Les sels qu’on utilise sont liquides jusqu’à des températures très élevées, donc le système fonctionne à pression atmosphérique. Tous les problèmes de plomberie qui sont associés avec une opération à pression élevée sont éliminés.

Avec un combustible liquide on peut appliquer plein d’astuces dans la conception de l’architecture du réacteur, qui aident aussi à simplifier la conception et réduire le coût.

En construisant les réacteurs en usine, un peu comme pour les avions, on peut s’inscrire dans la démarche des petits réacteurs modulaires, ce qui apporte aussi un gain de coût. On n’assemble pas les airbus dans les aéroports.

Et dans la production d’énergie thermique, plus c’est chaud, plus c’est utile. Les réacteurs à sels fondus fonctionnent à une température beaucoup plus élevée que le nucléaire actuel – environ 700°C au lieu de 350°C, et ça ouvre la porte à d’autres marchés que l’électricité, comme la chaleur industrielle, la production de carburants de synthèse, ou le dessalement de l’eau de mer.

imsr

Avec une technologie comme le réacteur intégral à sels fondus  (IMSR) de Terrestrial Energy, on peut aller vers un coût très faible pour une technologie nucléaire intrinsèquement sûre.

Ces petits réacteurs modulaires auront des tailles entre 30MWe et 300MWe. Leur commercialisation est attendue dans les années 2020.

SSR.jpgLe réacteur à sels stables (SSR) de Moltex Energy permettrait, avec un coût similaire en Euros par Watt, de remplacer les REP de génération 2 et 3.

D’une puissance minimum de 300MWe, l’ajout de modules de 150MWe porte sa puissance maximum à 1200MWe.

MSFR 2.jpgEt les travaux du CNRS et de l’équipe européenne du projet SAMOFAR sur le réacteur MSFR nous montrent le chemin vers une filière à combustibles liquides tout aussi durable que la filière des réacteurs à neutrons rapides refroidis au sodium, mais avec une fraction du coût.

Le seuil technologique de la fission liquide est un nouveau paradigme pour l’énergie nucléaire.

valeur-vs-cout-8

Avant d’aller sur Mars, avant de faire la fusion nucléaire ou les voitures autonomes, faisons déjà ce changement fondamental pour remplacer les combustibles nucléaires solides par des liquides, pour faire la fission nucléaire correctement.

Une fission nucléaire intrinsèquement sûre, fiable, propre et durable, ramenée à un coût qui permettra de concurrencer les carburants fossiles, peut permettre à l’humanité de simultanément augmenter sa prospérité et réduire son impact sur l’environnement.

Plus de valeur et moins de coût. C’est ça le vrai progrès.

La cerise sur le gâteau

Si le thorium est si prometteur, pourquoi la France ne le fait pas ?

En novembre, le CEA a publié un article sur son site pour expliquer aux jeunes l’essentiel sur… une filière nucléaire au thorium.

Cliquez sur l'image pour l'article

Cet article entre directement dans le vif du sujet :

« le développement de réacteurs utilisant le thorium ne présente pas d’intérêt technico-économique sur le court ou le moyen terme ».

Et si c’est le CEA qui le dit, ils ont forcément raison. Donc voilà, pour tous les jeunes qui voyaient un nouvel espoir pour le climat et l’industrie nucléaire française, le débat est clos.

Mais attendez, lisons jusqu’au bout :

« LE THORIUM EST ENVIRON QUATRE FOIS PLUS ABONDANT QUE L’URANIUM »

– oui, effectivement.

« POUR AMORCER UN RÉACTEUR AU THORIUM, IL FAUT DE L’URANIUM »

– ouais, ou bien du plutonium, ou un mélange d’actinides mineurs.

« L’UTILISATION DU THORIUM REQUERRAIT DEUX FILIÈRES DISTINCTES »

– ah bon ? Attendez, qu’est-ce qu’ils disent là ?

« Le retraitement des combustibles usés au thorium … nécessite le développement … d’un procédé spécifique (procédé thorex) »

Ah oui ! mais ils parlent des combustibles SOLIDES !!! c’est ça en fait, la traduction de « sur le court ou le moyen terme ». Et il faut aller jusqu’à la dernière phrase du dernier paragraphe pour lire que :

« Le développement de réacteurs à sel fondu utilisant du thorium est étudié par le CNRS. »

Pas par le CEA ! Dommage, car c’est bien la transition de combustibles solides à des combustibles LIQUIDES qui peut amener une véritable révolution dans l’industrie nucléaire.

Cerise

Il est vrai que le thorium n’est pas une panacée. On peut très bien faire fonctionner un réacteur à sels fondus avec de l’uranium, du plutonium ou même avec les « déchets » des réacteurs actuels.

Mais il est vrai aussi que le meilleur réacteur à sels fondus qu’on peut imaginer serait bien alimenté par du thorium.

Et c’est pour ça que les deux sont souvent cités ensemble. Mais la plupart des bénéfices viennent du changement d’état du combustible : solide –> liquide. Par exemple, dans un réacteur à sels fondus les produits de fission gazeux se séparent du combustible tout seuls. Ils forment des bulles dans le sel liquide et peuvent être extraits avec un bullage d’hélium – un principe démontré par le réacteur expérimental à sels fondus en 1965. Cet avantage considérable (comme d’autres) est impossible avec un combustible solide.

En tout cas, la France bénéficie d’une politique très claire sur les réacteurs à combustible liquide :

Peut pas

…qui est illustrée par cette courte vidéo (un extrait d’une vidéo SFEN sur les réacteurs de génération IV)

Hmmm. On comprend maintenant pourquoi dans l’article du CEA on parle d’un « intérêt potentiel à très long terme ».

Bien sûr qu’un réacteur comme ASTRID serait beaucoup plus durable qu’un réacteur à eau pressurisée, mais si l’énergie produite n’est pas moins chère que celle du charbon (et le gouvernement pense que « Il n’est cependant pas acquis aujourd’hui que les objectifs fixés puissent être atteints à un coût raisonnable.« ), il sera difficile de convaincre les gens, en France et à l’étranger, de faire le saut de fossile à fissile. La Chine et le Canada ont compris les avantages des réacteurs à sels fondus. Seront-ils les futurs rois de la #FissionLiquide ?

Maquette du réacteur ASTRID sur le stand CEA du World Nuclear Exhibition, Le Bourget, octobre 2014

Maquette du réacteur ASTRID sur le stand CEA du World Nuclear Exhibition, Le Bourget, octobre 2014

Il est vrai que la France a un grand retour d’expérience avec les réacteurs à combustible solide refroidis par l’eau ou le sodium. Il est vrai que développer une nouvelle technologie, très différente de l’actuelle, est quelque chose de difficile. Mais ce n’est pas parce que c’est difficile qu’il ne faut pas le faire.

Enlevons les oeillères – dans la quête d’une planète à l’énergie abondante et au climat stable, il faut investir dans les solutions à réel potentiel. Espérons que les jeunes seront plus ouverts à l’innovation que le CEA.

Peut-on dire le mot « Thorium » en public ?

Oui, on peut ! Le public était nombreux le 22 novembre rue de Poissy à Paris pour écouter scientifiques et industriels venus parler du « nucléaire du futur ».

Il faut d’abord souligner la qualité de l’organisation de ce colloque par la Fondation Ecologie d’Avenir, le lieu exceptionnel qu’est le collège des Bernardins, et la qualité de présentation de tous les intervenants. Merci à tous !

Mais si les intervenants de la communauté scientifique semblent prêts à imaginer un futur où le thorium jouerait un rôle majeur dans la production d’énergie, avec des ruptures technologiques pour améliorer rendement, sécurité et gestion des déchets, les intervenants coté industrie semblent convaincus que l’ancien nucléaire du futur demeure la meilleure voie à étudier et développer.

Rubbia et Béhar

Quand Carlo Rubbia, Prix Nobel de Physique, prend le micro pour vanter les avantages de l’énergie du thorium, le Directeur de l’énergie nucléaire au CEA Christophe Béhar est-il un peu gêné ?

La France a certes accumulé une vraie expertise avec la technologie des réacteurs à neutrons rapides (RNR) au sodium comme Phénix et Superphénix, et on peut comprendre la volonté de construire sur cette expertise avec un programme comme Astrid (500 personnes, 10 entreprises). Mais une stratégie de recherche et développement devrait être basée sur une analyse rationnelle et impartielle du potentiel scientifique de chaque technologie, et regarder au-delà des technologies dont on a l’habitude.

Astrid

Avec le programme ASTRID, la France a-t-elle mis tous ses œufs dans le même panier ?

 

Quand Daniel Heuer explique que le réacteur à sels fondus « Molten Salt Fast Reactor » (MSFR) développé par l’équipe CNRS / LPSC de Grenoble avec un budget minuscule a bien la capacité à devenir un réacteur industriel, qu’il est un « mange-tout », capable de transformer les déchets nucléaires des réacteurs actuels en énergie, de fonctionner au thorium, uranium ou plutonium avec une sécurité améliorée grace à un combustible liquide à pression atmosphérique, il faut qu’il soit écouté, et il faut ajuster la politique et la stratégie de la R&D française en conséquence.

P1160022

Daniel Heuer : « Le MSFR est un mange-tout »

 

Il est bon de parler. Continuons ce débat, en toute transparence. Le public en est demandeur.