De Charybde en Scylla

En avril 2015, Bill Gates a pris la parole à la conférence TED à Vancouver. Le titre de son « Talk » était : « La prochaine épidémie ? Nous ne sommes pas prêts. »

La vidéo est sous-titrée en français. Voici quelques extraits de la transcription :

« Quand j’étais gamin, la catastrophe dont on avait le plus peur était une guerre nucléaire. »

« Si quelque chose tue plus de 10 millions de gens dans les prochaines décennies, ce sera probablement un virus hautement contagieux plutôt qu’une guerre. Pas des missiles, mais des microbes. Une des raisons est que l’on a investi énormément dans la dissuasion nucléaire. Mais on n’a très peu investi dans un système pour arrêter les épidémies. Nous ne sommes pas prêts pour la prochaine épidémie. »

Nous connaissons tous désormais la suite. COVID-19 n’a pas encore tué 10 millions de gens, mais il aurait pu le faire. Et le coût pour éviter une mortalité dans les millions a été un ralentissement inédit des activités humaines dont nous n’avons pas encore commencé à mesurer les conséquences sociales et économiques.

Le 24 mars 2020 Gates a parlé par visio-conférence avec l’administrateur de TED Chris Anderson sur le thème « Comment nous devons répondre à la pandémie de coronavirus » :

Anderson Gates 2020-03-24

Anderson : « Il y a cinq ans, vous étiez sur la scène TED et vous avez donné cet avertissement effrayant que le monde était en danger, à un moment donné, d’une pandémie majeure. Les gens qui regardent ce discours maintenant, leurs cheveux se dressent à l’arrière de leur cou – c’est exactement ce que nous vivons. Que s’est-il passé, les gens ont-ils écouté cet avertissement ? »

Gates : « Fondamentalement, non. […] Le discours était pour dire : nous ne sommes pas prêts pour la prochaine pandémie, mais en fait, il y a des progrès dans la science tels que, si nous mettons des ressources en face, nous pouvons être prêts. Malheureusement, très peu a été fait. »

Peut-être qu’une des conclusions à tirer de l’épisode COVID-19 est qu’il faut écouter Bill Gates.

Dans quelques années, cette période étrange sera derrière nous. Un vaccin sera disponible, l’activité aura repris, et on peut espérer que la coopération mondiale aura permis de mettre en place des mesures bien plus efficaces pour lutter contre la prochaine épidémie. Nous serons tous contents quand ce sera fini.

De Charybde en Scylla 2

« Je serai content quand ce sera fini ». (Raf Schoenmaekers
@komkomdoorn)

Mais le problème du réchauffement climatique sera toujours là. L’accumulation des gaz à effet de serre dans notre atmosphère ne s’est pas arrêté quand nous avons diminué notre activité et elle reviendra rapidement aux niveaux de 2019 « à la rentrée » quand nous retrouverons une vie plus « normale ». Les impacts du changement climatique sur les humains et sur la nature seront d’un autre niveau et dureront bien plus longtemps que le petit souci de COVID-19 que nous vivons actuellement, et les solutions à ce problème demeurent inconnues. Nous tournons en rond.

Alors, que dit Bill Gates sur le climat ?

Il dit deux choses : premièrement, à côté de nos efforts pour obtenir plus d’énergie à partir des technologies dites « renouvelables », il va falloir beaucoup plus d’énergie nucléaire ; et deuxièmement, les technologies d’énergie nucléaire actuellement disponibles sont trop chères :

« Toute l’industrie nucléaire fabrique aujourd’hui un produit trop coûteux et dont la sûreté, même si elle est en fait assez bonne, dépend trop d’opérateurs humains.

Ainsi, l’industrie nucléaire ne survivra que s’il y a une nouvelle génération dont l’économie et la conception en matière de sûreté intrinsèque sont bien meilleures que tout ce qui existe actuellement.

Les réacteurs d’aujourd’hui ne sont pas économiques. Ignorez tout le reste. Donc l’industrie nucléaire va disparaître, et c’est vrai à l’échelle mondiale, à moins qu’il y ait un nouveau design. »

L’ entreprise TerraPower dont Gates est président travaille sur un concept de réacteur à sels fondus appelé MCFR (pour Molten Chloride Fast Reactor). Ce concept, étrangement similaire à celui étudié en France par le CNRS depuis 20 ans, est désormais considéré comme étant prioritaire chez TerraPower.

MCFR Terrapower

Cette fois-ci, Bill Gates sera-t-il écouté ? En tout cas, c’était encourageant de voir le PDG d’EDF Jean-Bernard Levy dans son bureau le 12 janvier 2020 pour une discussion sur les technologies de nucléaire avancé :

Chez EDF, la politique jusqu’ici sur les réacteurs à sels fondus est d’attendre de voir ce qui se passe chez les autres, puis d’acheter la technologie si ça marche. Dans le tableau ci-après ça correspond aux cases numéro 2 ou 4 :

On y va ça marche

Au stade où nous en sommes, personne ne sait si les réacteurs à sels fondus seront un succès commercial, s’ils permettront de répondre aux espoirs d’une énergie nucléaire plus sûre, moins chère que les énergies fossiles, permettant d’accéder aux marchés de la chaleur et des transports, au-delà de celui de l’électricité.

Si la technologie est un flop, la politique française nous positionnera dans la case 4, et tout le monde pourra se féliciter de la prudence collective qui a permis d’économiser les quelques dizaines de millions d’Euros nécessaires au financement d’un avant-projet de recherche et développement.

Mais si ça marche …. ?

Dans ce cas, la France se retrouvera dans la case 2. Et là les choses vont commencer à se compliquer pour ceux qui auront insisté sur une politique d’autruche. Face à une technologie de rupture, le spectre des conséquences s’étend du coût pour acheter la propriété intellectuelle des pays et entreprises qui ont développé la technologie (s’ils souhaitent coopérer avec la France), jusqu’au balayage de la carte de toute l’industrie nucléaire française (3ème du pays), si ses concurrents se montrent moins coopératifs.

Alors ces coûts et conséquences doivent se mettre dans la balance par rapport aux cases 1 ou 3, où l’on utiliserait des ressources et expertises françaises (qui sont d’ailleurs plutôt disponibles suite à l’arrêt du projet ASTRID) pour explorer cette technologie de génération 4 dans le contexte français, tisser des liens avec la communauté internationale et apporter une pierre à l’édifice d’un futur système d’énergie mondial bâti en grande partie sur la fission nucléaire à base de combustibles liquides.

Nous savons que la technologie des réacteurs à sels fondus fonctionne : le programme MSRE au Laboratoire national d’Oak Ridge l’a démontré entre 1965 et 1969. Est-ce vraiment raisonnable de parier sur l’échec de son déploiement à une échelle industrielle ?

Demain soir, Emmanuel Macron s’adressera aux français pour faire un point d’avancement sur la crise du COVID-19, et pour évoquer le sujet délicat de la fin du confinement. Beaucoup de certitudes, de convictions ayant été balayées, certains lui demandent que le « monde d’après » tienne compte davantage des enjeux climatiques. Nous sommes en guerre, et monsieur Macron a une opportunité rêvée de changer la direction du pays en ce qui concerne la production d’énergie.

Que dira-t-il ?

Macron 2020-04-13

Dans cette période de libertés restreintes nous avons toujours le droit, le devoir même, de rêver.

Une journée technique

Comment innover dans l’énergie nucléaire en France ?

Le thème pour la journée technique organisée par la Société Française d’Energie Nucléaire vendredi 1 décembre était la « place et évolution de l’énergie nucléaire dans le futur« . Quels sont les alternatifs aux grands Réacteurs à Eau Pressurisée comme l’EPR (ou EPR-NM) ?

La journée comprenait des présentations sur les trois technologies suivantes :

VCT

EDF a dévoilé des informations techniques sur leur petit réacteur modulaire (Small Modular Reactor – SMR). Avec une architecture intégrée et compacte, chaque réacteur aurait une puissance de 170 mégawatts électriques, logé dans une enceinte métallique de hauteur 15m et immergée dans un bassin d’eau pour assurer une sécurité passive. D’autres avantages seraient apportés par un bâtiment réacteur semi-enterré couvert par un tumulus de terre, contenant 4 réacteurs et permettant de mutualiser des ressources comme le bassin d’eau ou la salle de commande.

IMG_2680

Cette technologie fait désormais l’objet d’un avant-projet sommaire chez EDF, en partenariat avec le CEA, Naval groupe et Technicatome, qui doit déboucher dans 3 ou 4 ans sur une décision d’engager … ou non … son développement.

Mais le problème des petits réacteurs modulaires, c’est qu’ils sont petits.

Certes, la maîtrise française de la conception et l’exploitation des réacteurs à eau pressurisée permettra de développer cette technologie dans les années 2020, pour une commercialisation vers 2030. Certes, un petit réacteur modulaire sera moins cher que ses gros cousins qui constituent actuellement le parc français. Mais comme il sera environ 10 fois moins puissant qu’un EPR, pas sûr que les leviers économiques des petits réacteurs compensent la perte de valeur de cet effet d’échelle ! En tout cas, les experts économiques de l’I-tésé (Institut de Technico-Economie des Systèmes Energétiques) au CEA suivent l’affaire avec intérêt.

——————————————————————————–

Ensuite il y a ASTRID, le projet pour un démonstrateur de Réacteur à Neutrons Rapides au sodium (RNR-Na) développé par le CEA. Cette filière a l’avantage de présenter beaucoup de valeur : utilisation du stock français d’Uranium appauvri, fermeture du cycle de combustible, surgénération … avec les RNR sodium, l’énergie nucléaire serait assurée pendant des millénaires !

ASTRID

Dans l’avant-projet en cours, mené par un consortium d’entreprises françaises et internationales avec environ 600 personnes, il y a des discussions avec l’Institut de radioprotection et de sûreté nucléaire (IRSN), mais pas encore d’engagement formel avec l’Autorité de Sûreté Nucléaire (ASN). Cet avant-projet doit déboucher en 2019 sur une décision par les tutelles du CEA d’engager … ou non … le développement d’ASTRID.

Mais le problème des RNR sodium, c’est qu’ils sont chers.

Certes, la valeur offerte par cette filière est séduisante. Certes, la France maîtrise la technologie, ayant construit les réacteurs Rapsodie, Phénix et Superphénix, et elle a un grand retour d’expérience. Mais utiliser un caloporteur sodium avec un combustible solide, même si le danger de la pression est éliminé, présente un danger de réactivité chimique. Les inconvénients de ce concept sont identifiés et il est possible d’y remédier, mais les études économiques de l’I-tésé et d’autres sont claires : le principal enjeu de cette technologie est son coût.

Enjeux ASTRID

——————————————————————————–

Enfin, le concept de réacteur à sels fondus MSFR développé par le CNRS, qui se décline désormais en deux versions – un grand réacteur d’un Gigawatt, et un petit réacteur modulaire d’une puissance entre 100 et 300 Mégawatts. Les avantages de sûreté intrinsèques d’un combustible liquide avec des sels fondus chimiquement stables sont démontrés par les études de la petite équipe du CNRS, et apportent à la fois de la valeur et la possibilité d’une rupture dans le coût de l’énergie nucléaire.

MSFR

Il est déjà appréciable que la SFEN ait accepté d’inclure une présentation sur cette technologie dans leur journée technique. Le sujet est désormais incontournable dans toute discussion de la place et évolution de l’énergie nucléaire dans le futur, avec un intérêt international grandissant et le foisonnement d’entreprises start-up.

Pour les réacteurs à sels fondus, le temps est-il vraiment un problème ?

Quand le CEA parle des réacteurs à sels fondus, on pourrait conclure que les développements ne sont pas pour demain :

  • C’est un concept très innovant
  • Aucune construction d’un réacteur même prototype n’est actuellement lancée
  • Demanderait un processus de certification qui ne serait pas simple
  • Un certain nombre de difficultés techniques à résoudre en particulier dans le domaine de la chimie
  • Par contre c’est intéressant comme concept

Mais le CEA n’est pas un spécialiste dans ce domaine, ayant abandonné leur travail sur la technologie en 1983 en faveur des RNR sodium. Malheureusement, les économistes de l’I-tésé n’ont jamais chiffré un réacteur à sels fondus.

Les spécialistes dans d’autres pays disent que la technologie peut être déployée dans les années 2020, avec des architectures simplifiées par rapport au concept MSFR français. Le 7 novembre, l’Académie des Sciences de Chine et la province du Gansu ont signé un accord de coopération nucléaire pour un projet de réacteur à sels fondus à base de thorium, et visent un premier prototype de 2 Mégawatts en 2020.

Signature.jpg

En France, la communauté politique se pose actuellement de sérieuses questions sur le nucléaire. Est-ce une énergie de transition ou une énergie du futur ?

Si les réacteurs à sels fondus peuvent répondre aux attentes des clients de l’énergie nucléaire en termes de valeur, de coût et de temps, il serait temps d’y consacrer beaucoup plus de ressources.