Une journée technique

Comment innover dans l’énergie nucléaire en France ?

Le thème pour la journée technique organisée par la Société Française d’Energie Nucléaire vendredi 1 décembre était la « place et évolution de l’énergie nucléaire dans le futur« . Quels sont les alternatifs aux grands Réacteurs à Eau Pressurisée comme l’EPR (ou EPR-NM) ?

La journée comprenait des présentations sur les trois technologies suivantes :

VCT

EDF a dévoilé des informations techniques sur leur petit réacteur modulaire (Small Modular Reactor – SMR). Avec une architecture intégrée et compacte, chaque réacteur aurait une puissance de 170 mégawatts électriques, logé dans une enceinte métallique de hauteur 15m et immergée dans un bassin d’eau pour assurer une sécurité passive. D’autres avantages seraient apportés par un bâtiment réacteur semi-enterré couvert par un tumulus de terre, contenant 4 réacteurs et permettant de mutualiser des ressources comme le bassin d’eau ou la salle de commande.

IMG_2680

Cette technologie fait désormais l’objet d’un avant-projet sommaire chez EDF, en partenariat avec le CEA, Naval groupe et Technicatome, qui doit déboucher dans 3 ou 4 ans sur une décision d’engager … ou non … son développement.

Mais le problème des petits réacteurs modulaires, c’est qu’ils sont petits.

Certes, la maîtrise française de la conception et l’exploitation des réacteurs à eau pressurisée permettra de développer cette technologie dans les années 2020, pour une commercialisation vers 2030. Certes, un petit réacteur modulaire sera moins cher que ses gros cousins qui constituent actuellement le parc français. Mais comme il sera environ 10 fois moins puissant qu’un EPR, pas sûr que les leviers économiques des petits réacteurs compensent la perte de valeur de cet effet d’échelle ! En tout cas, les experts économiques de l’I-tésé (Institut de Technico-Economie des Systèmes Energétiques) au CEA suivent l’affaire avec intérêt.

——————————————————————————–

Ensuite il y a ASTRID, le projet pour un démonstrateur de Réacteur à Neutrons Rapides au sodium (RNR-Na) développé par le CEA. Cette filière a l’avantage de présenter beaucoup de valeur : utilisation du stock français d’Uranium appauvri, fermeture du cycle de combustible, surgénération … avec les RNR sodium, l’énergie nucléaire serait assurée pendant des millénaires !

ASTRID

Dans l’avant-projet en cours, mené par un consortium d’entreprises françaises et internationales avec environ 600 personnes, il y a des discussions avec l’Institut de radioprotection et de sûreté nucléaire (IRSN), mais pas encore d’engagement formel avec l’Autorité de Sûreté Nucléaire (ASN). Cet avant-projet doit déboucher en 2019 sur une décision par les tutelles du CEA d’engager … ou non … le développement d’ASTRID.

Mais le problème des RNR sodium, c’est qu’ils sont chers.

Certes, la valeur offerte par cette filière est séduisante. Certes, la France maîtrise la technologie, ayant construit les réacteurs Rapsodie, Phénix et Superphénix, et elle a un grand retour d’expérience. Mais utiliser un caloporteur sodium avec un combustible solide, même si le danger de la pression est éliminé, présente un danger de réactivité chimique. Les inconvénients de ce concept sont identifiés et il est possible d’y remédier, mais les études économiques de l’I-tésé et d’autres sont claires : le principal enjeu de cette technologie est son coût.

Enjeux ASTRID

——————————————————————————–

Enfin, le concept de réacteur à sels fondus MSFR développé par le CNRS, qui se décline désormais en deux versions – un grand réacteur d’un Gigawatt, et un petit réacteur modulaire d’une puissance entre 100 et 300 Mégawatts. Les avantages de sûreté intrinsèques d’un combustible liquide avec des sels fondus chimiquement stables sont démontrés par les études de la petite équipe du CNRS, et apportent à la fois de la valeur et la possibilité d’une rupture dans le coût de l’énergie nucléaire.

MSFR

Il est déjà appréciable que la SFEN ait accepté d’inclure une présentation sur cette technologie dans leur journée technique. Le sujet est désormais incontournable dans toute discussion de la place et évolution de l’énergie nucléaire dans le futur, avec un intérêt international grandissant et le foisonnement d’entreprises start-up.

Pour les réacteurs à sels fondus, le temps est-il vraiment un problème ?

Quand le CEA parle des réacteurs à sels fondus, on pourrait conclure que les développements ne sont pas pour demain :

  • C’est un concept très innovant
  • Aucune construction d’un réacteur même prototype n’est actuellement lancée
  • Demanderait un processus de certification qui ne serait pas simple
  • Un certain nombre de difficultés techniques à résoudre en particulier dans le domaine de la chimie
  • Par contre c’est intéressant comme concept

Mais le CEA n’est pas un spécialiste dans ce domaine, ayant abandonné leur travail sur la technologie en 1983 en faveur des RNR sodium. Malheureusement, les économistes de l’I-tésé n’ont jamais chiffré un réacteur à sels fondus.

Les spécialistes dans d’autres pays disent que la technologie peut être déployée dans les années 2020, avec des architectures simplifiées par rapport au concept MSFR français. Le 7 novembre, l’Académie des Sciences de Chine et la province du Gansu ont signé un accord de coopération nucléaire pour un projet de réacteur à sels fondus à base de thorium, et visent un premier prototype de 2 Mégawatts en 2020.

Signature.jpg

En France, la communauté politique se pose actuellement de sérieuses questions sur le nucléaire. Est-ce une énergie de transition ou une énergie du futur ?

Si les réacteurs à sels fondus peuvent répondre aux attentes des clients de l’énergie nucléaire en termes de valeur, de coût et de temps, il serait temps d’y consacrer beaucoup plus de ressources.

 

Publicité

Architecte !

En janvier 2014, un article publié sur ce site a prédit que :

Le champion de la deuxième époque nucléaire sera l’Architecte de Système d’Énergie Nucléaire.

Illustrons cette idée – à quoi pourrait ressembler l’un de ces architectes atomiques ?

Architecte ! FR

Cette personne est dynamique et déterminée. Il va de l’avant, motivé par l’envie de satisfaire les besoins d’un client, et par l’énorme potentiel de l’atome pour résoudre le problème urgent du changement climatique.

Il est content parce qu’il a une vision de construire une machine qui sera un progrès pour l’humanité et pour la nature. Il porte des outils qui, utilisés ensemble, lui permettront d’atteindre cette vision.

Son client a besoin d’une technologie de rupture qui produira de l’énergie propre qui est moins chère que le charbon. Notre architecte n’est pas un grand expert de la physique, ni de la chimie, mais il sait comment réunir ces disciplines et d’autres pour illustrer, défendre et développer un concept équilibré de système d’énergie nucléaire, en termes de valeur, coût et temps, qui sera attractif pour les parties prenantes tels que le client et des investisseurs.

Dans sa façon de penser, il a rejeté certaines mythes et croyances de la première époque nucléaire, tel que l’idée que le nucléaire est spécial ou différent des autres industries, ou celle qui consiste à dire que les règles normales du marché ne s’appliquent pas au nucléaire. Il est ouvert à des solutions très différentes de la technologie traditionnelle, comme des réacteurs avec un combustible liquide à base de sels fondus qui lui permettent de profiter pleinement des outils dans ses deux boîtes.

Physique + Chimie > Physique

Ce n’est pas toujours facile pour lui de travailler avec ses collègues physiciens et chimistes. Les disciplines scientifiques sont surtout concernées par la recherche de propositions pour la création de valeur (pour un physicien de réacteur, le coût et le temps ne sont tout simplement pas son problème…). Mais comme c’est lui qui décide, il arrive à les sortir de leur monde dominé par la certitude de la connaissance scientifique, pour les emmener vers le monde de l’architecte, plongé dans le doute permanent du meilleur compromis entre valeur, coût et temps.


 

Le secteur de l’énergie nucléaire a un problème de gouvernance. Impressionnés par la neutronique, les politiques ont donné aux physiciens le pouvoir de décider quel concept développer. Des architectes seraient mieux placés pour défendre les intérêts des parties prenantes.

On a commencé par une prédiction – terminons par une autre :

La deuxième époque nucléaire débutera lorsque les politiciens transféreront le pouvoir des physiciens aux architectes.

Espérons que ce passage de pouvoir se passera dans de bonnes conditions.

 

Illustration : Alexia Laurie

UK flag Une version de cet article en anglais est disponible ici.

Un tabouret à trois pieds

Toute évolution technologique est précédée par un changement philosophique. C’est quand on arrive à penser différemment, quand on challenge sa culture, ses croyances et valeurs, qu’on peut repartir sur une voie différente.

Vu de l’extérieur, dans la culture de ceux qui soutiennent la fission nucléaire, il semble y avoir quelques croyances curieuses :

  • Le nucléaire est spécial, différent.
  • Les règles normales du marché ne s’appliquent pas au nucléaire.
  • On utilise le nucléaire uniquement pour produire de l’électricité.
  • Le nucléaire est une affaire d’État, de gouvernements
  • La physique est plus importante que la chimie.
  • La technologie est plus importante que les humains.
  • La valeur est plus importante que le coût et le temps.

Commençons par regarder la dernière sur la liste.

Dans le transfert de technologie, entre l’émergence d’une idée et sa commercialisation, différentes voies sont imaginées, explorées et évaluées selon trois critères : la valeur, le coût et le temps. Comme un tabouret à trois pieds, les idées de produits et services avec une proposition équilibrée entre ces critères sont attractives pour les investisseurs, les clients et le public, pour le développement d’un marché.

Tabouret 3 pieds

La découverte de la fission nucléaire a ouvert une nouvelle proposition de valeur pour l’humanité dans la production d’énergie : à masse égale, elle produit environ un million de fois plus d’énergie que la combustion. Et elle peut produire ces quantités massives d’énergie, de façon fiable et pilotable, sans émettre dans l’environnement des polluants comme le dioxyde de carbone. Très concentrée sur la maîtrise scientifique et industrielle de cette proposition de valeur, la communauté nucléaire a développé une culture où le coût et le temps sont des inconvénients à traiter plus tard.

Au début, cette stratégie a bien fonctionné. Même si une machine capable d’entretenir une réaction en chaîne était plus chère et plus longue à concevoir et construire qu’une centrale électrique à charbon ou à gaz, la valeur et les économies d’échelle offertes par des réacteurs de plus en plus puissants couvraient largement les écarts de coût et de temps. Le nucléaire était capable de tenir ses promesses et attirer des grands investissements.

Mais le marché de l’énergie a changé. L’industrie fossile, avec peu de propositions pour augmenter sa valeur, s’est concentrée sur la réduction de ses coûts – avec par exemple le développement de la fracturation hydraulique pour extraire du gaz naturel. Un lobby intense a attaqué tous les aspects de l’énergie nucléaire : réglementation, image du public, délais de construction, sécurité, peur de la radioactivité… La férocité et la constance de ces attaques sont impressionnantes, mais au lieu de se défendre contre la dégradation de ses performances en coût et en temps, la communauté nucléaire a répondu en proposant toujours plus de valeur : plus de puissance, plus de sûreté, une meilleure gestion du cycle de combustible, moins de risque, maîtrise de la fiabilité… Au point où la complexité de la technologie et des projets est telle que le bon équilibre entre valeur, coût et temps a été perdu, et l’offre de l’industrie pour la construction de nouvelles centrales nucléaires n’est plus en mesure de tenir ses promesses :

Tabouret bancal

Dans la lutte contre le réchauffement climatique, le monde a besoin de l’énergie de la fission nucléaire. Mais laquelle ? Il y a des dizaines de concepts possibles pour une centrale nucléaire, chacun avec ses avantages et inconvénients.

Le marché veut accéder à la valeur de l’énergie nucléaire avec moins de coût, et plus vite. La survie de l’énergie nucléaire dépendra de la capacité de la communauté de personnes qui se soucient de sa proposition de valeur à changer leurs croyances dans l’évaluation des nouveaux concepts.

On commence à voir ce changement de paradigme dans les entreprises de nucléaire avancé, qui ont compris l’importance primordiale du temps. La recherche d’innovations modulaires est une tentative d’en finir avec l’idée qu’il faut dix ans pour construire une centrale nucléaire. Aussi, certains concepts avec un potentiel important de réduction de coût, comme les réacteurs à sels fondus, n’ont pas encore été déployés à une échelle industrielle, et il est essentiel de présenter aux investisseurs un chemin vers la commercialisation crédible, rapide et avec le moins de risque possible. Pour éviter de longs programmes de recherche, il faut être prêt à utiliser des composants, des procédés et des matériaux déjà éprouvés, donc de faire des compromis difficiles sur la proposition de valeur, et parfois sur le coût.

Dans une conférence à Paris le 28 septembre 2017, le président de la Société Nucléaire Américaine (ANS) Robert Coward a dit que le but pour le nucléaire avancé était d’offrir « la moitié du coût, deux fois plus vite ». Si la communauté nucléaire peut changer ses croyances et sa façon de penser, si elle peut mettre toutes ses forces derrière des concepts équilibrés en termes de valeur, coût et temps, le marché réserve un avenir brillant pour cette énergie, pour l’environnement et pour l’humanité.

UK flag Cliquez ici pour la version anglaise de cet article.

Illustration : Alexia Laurie (compte Instagram – drawings_by_giraffs)

Valeur vs Coût

La vie est pleine d’arbitrages. Que le choix soit majeur comme où habiter, ou mineur comme l’achat d’un produit au supermarché, nous pesons constamment la valeur de nos décisions contre leur coût.

La France a décidé dans les années 1970 de produire une grande partie de son électricité à partir d’énergie nucléaire. En 2015, 58 réacteurs à eau pressurisée dits de « génération 2 » ont produit 76,3% de son électricité. Même si un réacteur nucléaire est une machine très chère, l’énergie nucléaire a beaucoup de valeur – elle permet de produire de vastes quantités d’énergie en sécurité, de façon fiable 24h/24h, sans envoyer dans l’atmosphère du CO2 et d’autres polluants.

parc-nucleaire-francais

Pour mesurer subjectivement la valeur de l’énergie nucléaire, la quantité d’énergie produite est la première considération, mais les technologies qui permettent de gagner en sécurité, fiabilité, propreté et durabilité apportent aussi de la valeur.

Imaginons un graphique de valeur contre coût.

  • En rouge la partie avec faible valeur et coût élevé
  • En vert la partie avec valeur élevée et coût faible.

Plaçons la technologie actuelle des réacteurs nucléaires de génération 2 au milieu de ce graphique :

valeur-vs-cout-5

A partir de cet état des lieux, différentes options sont disponibles.

epr

EPR

On peut par exemple aller vers la technologie de génération 3 (ou 3+) comme le réacteur EPR actuellement en construction à Flamanville.

Cette technologie a de nombreux avantages en termes de sécurité par rapport à la génération 2, avec l’ajout de nouveaux systèmes. Un réacteur EPR est également plus puissant, avec une capacité de 1 650 MWe. La technologie a donc plus de valeur que la génération 2.

Mais la génération 3 est bien plus chère que la génération 2. Le planning du projet ayant été repoussé plusieurs fois, l’estimation pour le coût du réacteur Flamanville 3 est actuellement 10,5 milliards d’euros (soit 6,36 €/W).

astrid

ASTRID

Sinon, il y a l’option de la génération 4, où la France développe le projet ASTRID, qui a pour objectif de relancer la filière des réacteurs à neutrons rapides au sodium, suite aux réacteurs expérimentaux Rapsodie, Phénix et Superphénix. ASTRID est réputé être aussi sûr que les réacteurs de génération 3+, mais apporte de la valeur en fermant le cycle nucléaire pour apporter une vraie réponse au problème de la durabilité.

Dans les mots de monsieur Nicolas Devictor, chef du programme ASTRID au CEA :

« En France, toutes les parties sont d’accord pour dire qu’un réacteur à neutrons rapides refroidi au sodium sera toujours plus cher qu’un réacteur à eau pressurisée. Toujours. »

« Il y a un service par contre qui n’est pas le même. Un réacteur à neutrons rapides – c’est un service sur le cycle, sur la gestion des matières. C’est de l’indépendance énergétique en partie aussi dont on parle, parce qu’en France on a des stocks d’uranium importants. On a un stock de Plutonium significatif aussi. »

Donc ASTRID, comme la génération 3, c’est plus de valeur pour plus de coût.

Une autre option est disponible – celle des petits réacteurs modulaires.

prm

Petits réacteurs modulaires

Assemblés en usine et livrés à la centrale par chemin de fer ou camion, leur petite taille permet une réduction importante du coût, et un financement plus facile.

Mais avec une puissance typiquement entre 50MWe et 300MWe, il faut construire plusieurs réacteurs pour produire la même quantité d’électricité qu’un réacteur de génération 2. Donc cette technologie présente moins de coût pour moins de valeur.

Toutes ces options technologiques utilisent un combustible à l’état solide. Plaçons les sur notre graphique de valeur vs coût :

valeur-vs-cout-6

Toutes les technologies ont un seuil de coût minimum. Quand on choisit le concept de la technologie, on choisit aussi son seuil de coût. Le seuil de la fission solide empêche l’industrie nucléaire actuelle de quitter la zone jaune.

La vraie innovation, ce serait une technologie qui nous rapproche du smiley vert – plus de valeur pour moins de coût.

Et la fission liquide peut faire cela. Les technologies en développement de réacteurs à sels fondus ont un coût réduit à cause de leur sécurité intrinsèque.

valeur-vs-cout-3

De loin le plus grand avantage vient de la chimie des sels fondus. Quand les produits de fission sont créés dans un liquide ionique, ils sont enfermés dans ce liquide qui est chimiquement très stable. Les liaisons fortes entre les atomes les empêchent de sortir du liquide, donc le premier niveau de confinement est assuré par la chimie. On agit directement pour réduire le danger du système de réacteur.

Les sels qu’on utilise sont liquides jusqu’à des températures très élevées, donc le système fonctionne à pression atmosphérique. Tous les problèmes de plomberie qui sont associés avec une opération à pression élevée sont éliminés.

Avec un combustible liquide on peut appliquer plein d’astuces dans la conception de l’architecture du réacteur, qui aident aussi à simplifier la conception et réduire le coût.

En construisant les réacteurs en usine, un peu comme pour les avions, on peut s’inscrire dans la démarche des petits réacteurs modulaires, ce qui apporte aussi un gain de coût. On n’assemble pas les airbus dans les aéroports.

Et dans la production d’énergie thermique, plus c’est chaud, plus c’est utile. Les réacteurs à sels fondus fonctionnent à une température beaucoup plus élevée que le nucléaire actuel – environ 700°C au lieu de 350°C, et ça ouvre la porte à d’autres marchés que l’électricité, comme la chaleur industrielle, la production de carburants de synthèse, ou le dessalement de l’eau de mer.

imsr

Avec une technologie comme le réacteur intégral à sels fondus  (IMSR) de Terrestrial Energy, on peut aller vers un coût très faible pour une technologie nucléaire intrinsèquement sûre.

Ces petits réacteurs modulaires auront des tailles entre 30MWe et 300MWe. Leur commercialisation est attendue dans les années 2020.

SSR.jpgLe réacteur à sels stables (SSR) de Moltex Energy permettrait, avec un coût similaire en Euros par Watt, de remplacer les REP de génération 2 et 3.

D’une puissance minimum de 300MWe, l’ajout de modules de 150MWe porte sa puissance maximum à 1200MWe.

MSFR 2.jpgEt les travaux du CNRS et de l’équipe européenne du projet SAMOFAR sur le réacteur MSFR nous montrent le chemin vers une filière à combustibles liquides tout aussi durable que la filière des réacteurs à neutrons rapides refroidis au sodium, mais avec une fraction du coût.

Le seuil technologique de la fission liquide est un nouveau paradigme pour l’énergie nucléaire.

valeur-vs-cout-8

Avant d’aller sur Mars, avant de faire la fusion nucléaire ou les voitures autonomes, faisons déjà ce changement fondamental pour remplacer les combustibles nucléaires solides par des liquides, pour faire la fission nucléaire correctement.

Une fission nucléaire intrinsèquement sûre, fiable, propre et durable, ramenée à un coût qui permettra de concurrencer les carburants fossiles, peut permettre à l’humanité de simultanément augmenter sa prospérité et réduire son impact sur l’environnement.

Plus de valeur et moins de coût. C’est ça le vrai progrès.