Présentation à l’I.R.C.E. : Fission Liquide et Éco-modernisme

L’Institut de Recherche et de Communication sur l’Europe (I.R.C.E.) est un organisme associatif indépendant de loi 1901 travaillant sur les dynamiques européennes, de nature apolitique, indépendante et généraliste.

Dans le cadre des dîners LUNAR SOCIETY de l’I.R.C.E. de la recherche et de l’innovation européenne, John Laurie a donné une présentation le 23 mai 2016 avec le titre « Fission Liquide et Eco-modernisme ».

IRCE 2016-05-23

Vous trouverez ci-dessous la présentation en format .pdf, ainsi que sa transcription en format Word.

pdf_logo word-logo

Cette présentation suggère qu’au 21ème siècle une nouvelle technologie de production d’énergie nucléaire émergera basée sur les combustibles liquides et leurs avantages intrinsèques de sûreté et de coût. Et que cette technologie sera accueillie à bras ouverts par des éco-modernistes, qui savent que la seule façon de progresser dans notre transition énergétique, de donner à chaque humain une qualité de vie décente et d’éviter la menace du réchauffement climatique est de développer une source d’énergie propre, massive et fiable qui est moins chère que le charbon.

Un parteneriat pour l'avenir

Publicités

Des millions de dollars pour la fission liquide

Bill Gates ne perd pas son temps. Le 30 novembre 2015 il a lancé à la conference COP21 à Paris la Breakthrough Energy Coalition, un groupe de 28 milliardaires qui se sont réunis pour investir dans l’énergie propre.

Membres BEC 2

Et le même jour il était aux côtés de 20 chefs d’état pour lancer Mission Innovation. Ces 20 pays vont doubler leurs budgets de recherche dans les énergies propres d’ici 5 ans.

Mission Innovation

Avec cette nouvelle organisation, quelle technologie d’énergie propre révolutionnaire est en première ligne en Amérique du Nord pour recevoir des fonds privés et publics?

Le Réacteur à Sels Fondus.

Terrapower, l’entreprise start-up soutenue par Bill Gates, a jusqu’alors été focalisée sur le développement d’un Réacteur à onde progressive, avec refroidissement au sodium. Sur leur site internet il est indiqué que « TerraPower prévoit que le réacteur à ondes progressives (TWR) puisse être compétitif en coût avec les réacteurs à eau légère existants« . Mais Gates sait très bien que ce n’est pas suffisant. Pour faire une vraie rupture, une nouvelle technologie nucléaire doit être moins chère que le charbon.

L’atteinte de cette cible serait possible avec un réacteur à sels fondus parce que le profil de sécurité unique offert par un combustible liquide à base de sels chimiquement stables réduit considérablement les hasards associés à l’opération d’un réacteur nucléaire.

L’annonce a été faite le 15 janvier 2016 par le Département de l’Énergie des États-Unis d’une subvention allant jusqu’à 40 millions de dollars, avec une somme initiale de 6 millions de dollars, pour développer le Réacteur Rapide à Chlorures Fondus (Molten Chloride Fast Reactor, MCFR). Terrapower développe ce réacteur avec Southern Company, un des plus grands producteurs d’électricité des États-Unis, et avec la collaboration du Electric Power Research Institute, de l’Université Vanderbilt, et du Laboratoire national d’Oak Ridge.

Partenaires MCFR.jpg

Mais Bill n’est pas le seul à s’intéresser aux réacteurs à sels fondus outre-atlantique.

Le 8 janvier 2016 la société canadienne Terrestrial Energy a annoncé avoir terminé un tour de financement, pour 10 millions de dollars canadiens. A rajouter à leur premier tour de capital d’amorçage qui a levé environ 1 million de dollars canadiens. Un troisième tour est prévu pour 2016. Terrestrial Energy vient de passer un jalon majeur dans le développement de leur Réacteur Intégral à Sels Fondus, avec l’annonce le 25 février 2016 de leur engagement dans le processus de validation de leur technologie avec la Commission canadienne de sûreté nucléaire. Ils ont publié le 1 mars 2016 une série d’images pour mieux visualiser l’architecture de la technologie :

IMSR

Et comme Terrapower, Terrestrial Energy a réussi à obtenir un soutien gouvernemental. Le 4 mars 2016, le gouvernement canadien a annoncé une subvention de 5,7 millions de dollars canadiens. Terrestrial Energy a rajouté à cette annonce qu’ils vont fabriquer d’ici septembre 2018 un prototype non-nucléaire de leur réacteur, chauffé électriquement, pour effectuer des essais de validation.

Dans un entretien avec le site internet Nuclear Energy Insider publié le 7 mars 2016, leur directeur général Simon Irish a dit : « La baisse des coûts associée à ce système signifie que le coût moyen actualisé est estimé à $40-$50 / MWh, sur la base d’un réacteur d’une capacité de 300 MWe. »

Et à Boston, l’entreprise Transatomic Power a levé 6,3 millions de dollars de différents investisseurs privés, y compris le Founders fund de Peter Thiel, le financier de PayPal et Facebook. Transatomic développe un réacteur à sels fondus qui serait capable de transformer les déchets issus des réacteurs à eau pressurisée actuels en énergie, et ainsi offrir une solution à la question de la gestion de ces déchets.

TAP

Ca commence à faire beaucoup de dollars !

3-million.jpg

Avec ce niveau d’intérêt, on peut se demander combien de temps encore la France peut continuer à ignorer les avantages de la fission liquide.

Machines à vapeur

Attention ! Question piège :

Qui a inventé la machine à vapeur ?

Inventeurs.jpg

La réponse ?

Tous ont apporté leur pierre à l’édifice. La nature du développement technologique est ainsi – chaque inventeur se tient sur les épaules des géants qui l’ont précédé.

L’histoire du développement humain est étroitement liée au coût de l’énergie. Les humains chasseurs-cueilleurs de la préhistoire ont besoin d’une grande superficie de terrain pour survivre. Une population plus importante devient possible avec l’agriculture, puis en remplaçant l’énergie mécanique des hommes par celle des animaux de trait. Mais à la fin du moyen âge, l’Europe est confrontée à la catastrophe écologique de la déforestation. On commence alors à exploiter l’énergie thermique de la houille, mais les réserves disponibles près de la surface sont rapidement épuisées.

Thomas Newcomen combine les idées de Denis Papin et Thomas Savery pour inventer en 1712 la première machine à vapeur utilisée commercialement, pour extraire l’eau des mines et permettre une extraction en profondeur.

Newcomen_atmospheric_engine_animation

Avec cette machine thermique les humains sont enfin capables de transformer l’énergie thermique en énergie mécanique. C’est le début de la révolution industrielle.

thermique-mécanique.jpg

Le coût de l’énergie issue d’une machine thermique est composé :

  • du coût du capital de la machine
  • du coût du carburant pour la source de chaleur
  • des coûts de fonctionnement

La machine de Newcomen est capable de convertir en énergie mécanique seulement 1,3% de l’énergie dans le charbon qui l’alimente. Avec ce faible rendement, son coût du carburant est très important, mais il faut attendre 58 ans et l’invention de James Watt pour faire mieux.

Machine de Watt.jpg

La genie de Watt est de réaliser que la machine de Newcomen gâche presque trois quarts de l’énergie de la vapeur en chauffant le piston et la chambre. Avec une chambre de condensation séparée, le rendement est plus que doublé. Le coût de la machine étant similaire, l’énergie produite coûte bien moins cher.

Watt s’associe alors avec Matthew Boulton. Les revenus de leur entreprise « Boulton & Watt » sont avant tout générés par les économies en charbon réalisées par les propriétaries des machines.

Pensez-vous que James Watt a inventé la machine à vapeur ?

Rendement des machines à vapeur

Source : « Dynamics of Technological Change« , L.A. Girifalco, p.484

L’histoire de la révolution industrielle est une course pour atteindre des rendements toujours plus importants des machines thermiques. C’est vrai que Watt y a largement contribué, mais cette démocratisation du coût de l’énergie qui rend possible la vie moderne est le travail de multiples inventeurs et ingénieurs.

La machine de Newcomen, utilisée uniquement dans les mines, a rapidement été remplacée par celle de Watt. Avec un coût de l’énergie toujours en baisse grâce aux améliorations en continu chez Boulton & Watt, leur machine remplace également l’énergie éolienne des moulins à vent et l’énergie hydraulique des roues à aubes, devenant de plus en plus utile.

Il est étonnant dans le graphique ci-dessus de remarquer qu’il faut 200 ans pour passer d’un rendement de 1,3% au rendement de 20% de la première turbine de Charles Parsons. On ne peut jamais sous-estimer la difficulté que présente le changement technologique – souvent les technologies nécessaires à la fabrication d’une machine rentable progressent moins vite que les théories et les idées des inventeurs.

Aujourd’hui les turbines dans les centrales électriques à cycle combiné gaz permettent d’atteindre des rendements supérieurs à 61%, mais les temps modernes ont vu un autre progrès important dans les machines à vapeur, du côté de la source de chaleur.

EPR Flamanville

Une grande machine à vapeur actuellement en construction à Flamanville

Les combustibles nucléaires à base d’uranium et thorium ont une densité énergétique environ 1 million de fois supérieure aux combustibles fossiles, mais les machines pour extraire cette énergie sont bien plus complexes que les chaudières des anciennes machines à vapeur. Le nucléaire a donc une logique économique différente, où le coût du carburant est minime et le capital investi dans la machine représente la plupart du coût de l’énergie.

En 2016 l’humanité est confrontée au réchauffement climatique. Malgré le progrès des énergies renouvelables et du nucléaire à bas carbone, les énergies fossiles progressent plus vite parce qu’elles sont moins chères. L’histoire de la machine à vapeur nous montre que la prospérité humaine progresse quand le coût de l’énergie diminue. Le défi majeur du 21ème siècle est d’atteindre une prospérité décente pour chaque humain et simultanément d’arrêter le réchauffement climatique et réduire l’impact des humains sur l’environnement. La conférence COP21 a échoué à mettre en place une taxe carbone parce qu’il est politiquement impossible de rendre l’énergie plus chère, même si elle est sale. L’énergie propre est un problème d’ingénierie – elle doit être moins chère que le charbon.

Le développement commercial de la fission nucléaire a atteint un niveau très similaire à celui de la machine à vapeur il y a 250 ans.

  • Après des premières expériences, un seul principe a été déployé commercialement
  • Cette technologie a atteint ses limites
  • La technologie est sur le marché depuis plus de 50 ans
  • L’utilisation du carburant est faible
  • Le coût de l’énergie produite n’est pas très competitif avec les alternatives sur le marché
  • Quelques centaines de machines ont été produites
  • Les machines ont une seule utilisation commerciale
  • La civilisation humaine est face à une crise environnementale
  • Le rythme de déploiement des machines est insuffisant pour résoudre cette crise environnementale.
  • Le potentiel théorique reste immense
  • Un système amélioré a été inventé, avec le potentiel de faire une rupture dans le coût de l’énergie
  • Ce nouveau système est en cours de développement
  • L’industrie établie a dénoncé la faisabilité du nouveau système [1]

Tout comme Boulton & Watt, les innovateurs actuels dans l’énergie nucléaire ont réalisé l’importance primordiale de réduire le coût de cette énergie. Mais au lieu de viser une meilleure utilisation du carburant, les principes économiques de l’énergie nucléaire nécessitent de réduire le coût de la machine.

Alors, pourquoi les systèmes d’énergie nucléaires actuels sont-ils chers?

Quand on fissionne le noyau d’un atome, deux nouveaux atomes sont générés qui s’appellent des produits de fission. Ils sont très radioactifs et hasardeux pour les humains. Ces atomes se désintègrent sur des périodes plus ou moins longues jusqu’au moment où ils deviennent des isotopes stables qui ne sont plus hasardeux.

Dans les réacteurs à eau pressurisée utilisés aujourd’hui, le combustible est un solide. Les produits de fission restent enfermés dans cette matière solide mais peuvent s’échapper si le combustible chauffe et fond. Comme certains produits sont des gaz, un confinement du réacteur est nécessaire pour éviter leur dispersion dans l’atmosphère en cas d’accident. Ce confinement est compliqué et cher parce que le système fonctionne avec une pression très élevée. Ces fragilités nécessitent l’utilisation de nombreux systèmes de sécurité compliqués et onéreux pour garantir un niveau de sûreté acceptable.

Le coût d’un système d’énergie nucléaire est une fonction du profil de sécurité intrinsèque du système de réacteur.

Dans un réacteur à sels fondus le combustible est un liquide. Le mélange de sels est choisi pour rester liquide sur une grande plage de températures, et pour pouvoir dissoudre la matière fissile et la plupart des produits de fission sous la forme de sels qui sont chimiquement très stables. La dilatation du liquide selon la température assure un fort coefficient de contre-réaction qui donne une stabilité dynamique de fonctionnement, à pression atmosphérique. Avec une sécurité intrinsèque assurée par cette conception chimique, la « fission liquide » permet d’envisager un système de réacteur plus simple et bien moins cher.

Une course internationale a commencé pour lancer cette technologie sur le marché. La magie de l’entrepreneuriat, quand un architecte technique avec une idée rencontre un investisseur avec des fonds, est à l’oeuvre pour concevoir puis construire ces machines, avec des millions de dollars engagés. La rupture technologique de la fission liquide n’est plus une question de « si ». C’est une question de « qui » et de « quand ».

Qui seront les Boulton & Watt du 21ème siècle ?

Partenariats

L’énergie nucléaire suivra la même courbe de développement que la machine à vapeur, mais avec un décalage d’environ 250 ans. Avec un coût compétitif et une capacité de production importante, elle contribuera activement à lutter contre le réchauffement climatique.

Pour les systèmes à fission liquide en développement aujourd’hui, les principaux éléments de création de valeur qui permettront de réduire le coût de l’énergie seront :

  • La sécurité intrinsèque d’un combustible liquide chimiquement stable
  • Une conception élégante et simplifiée, avec une architecture astucieuse du système complet
  • Une température de fonctionnement plus élevée
  • Une approche modulaire pour la fabrication des bâtiments et composants, l’assemblage et la mise en exploitation

Pour le futur, il reste un potentiel important de réduction de coût avec :

  • Des systèmes surgénérateurs
  • Des machines thermiques plus petites qui exploitent mieux les hautes températures de fonctionnement
  • Un cycle de combustible au thorium, ou qui incinère les déchets des réacteurs actuels
  • Des améliorations des matériaux pour prolonger la vie de certains composants
  • Un processus rationalisé pour l’attribution de licences d’exploitation

… sans mentionner les inventions à venir.

Et comme la machine à vapeur, les systèmes d’énergie nucléaire moins chers et plus compacts trouveront beaucoup plus d’utilisations :

  • Fourniture de chaleur pour les processus industriels
  • Production de carburants liquides de synthèse à partir d’eau et de dioxide de carbone
  • Dessalement de l’eau de mer
  • Alimentation de collectivités hors réseau
  • Propulsion marine

Ce futur est possible. Il est même probable car il est nécessaire. Avec l’esprit d’entreprenariat qui animait Boulton & Watt nous pouvons fabriquer des machines à vapeur modernes et moins chères qui seront un progrès pour l’humanité et pour la planète.

[1] Quand John Smeaton a vu la première machine de Watt, il a signalé à la société des ingénieurs que « ni les outils ni les ouvriers existent qui peuvent fabriquer une machine aussi complexe avec suffisamment de précision ».

UK flag Cet article a été publié en anglais sur le site de la « Alvin Weinberg Foundation »

Un nouveau rapport sur la fission liquide

Au Royaume-Uni, la société Energy Process Developments a publié un rapport avec le titre « Faisabilité de développement d’un réacteur à sels fondus prototype au Royaume-Uni« .

EPD

EPD a été créée en 2014 suite à l’annonce d’un financement de £100 000 du Technology Strategy Board, organisme stratégique du gouvernement britannique en matière d’innovation. Leur étude a été suivie par les universités d’Oxford et Cambridge, avec comme objectifs de :

  • Faire un examen complet de la technologie des réacteurs à sels fondus (RSF)
  • Identifier les développements récents dans ce domaine
  • Comparer les technologies offertes par 6 entreprises
  • Proposer la technologie la plus adaptée pour le développement d’un prototype de réacteur au Royaume-Uni

Technologies étudiées

Le rapport, publié en août 2015, est un document de 75 pages en anglais, disponible en format .pdf par simple clic sur ce lien. Chaque chapitre se termine par quelques lignes de synthèse, traduites en français ci-dessous :

Résumé

Les auteurs de ce rapport recommandent à tous les intéressés qu’ils devraient faire d’urgence les investissements nécessaires, ainsi qu’un engagement pour procéder avec un programme de réacteur à sels fondus, y compris un prototype de démonstration tel qu’identifié par cette étude.

1. Opportunités & aperçu de l’industrie

  • Le Royaume-Uni a un budget de R&D nucléaire inexistant par rapport aux autres grands pays.
  • Il existe une opportunité pour le Royaume-Uni d’avoir une part de £240 milliards dans un marché international du nucléaire de £1000 milliards d’ici 2030. Des RSF à combustible liquide peuvent être développés au Royaume-Uni pour alimenter ce marché.
  • Les RSF peuvent avoir le potentiel d’être plus économiques et sont plus sûrs que les technologies d’aujourd’hui. Les RSF peuvent traiter les stocks de déchets et de plutonium.
  • La prospérité, la consommation d’énergie, le gaz à effet de serre et la croissance démographique sont apparemment tous liés. Avec une source d’énergie propre et pas chère, ils peuvent tous être stabilisés.
  • Une action immédiate du gouvernement britannique peut lancer la technologie des RSF.

2. Concepts de RSF évalués par cette étude

  • La recherche et le développement mondiaux des RSF sont actuellement dirigés par la Chine. Ailleurs, de petites start-ups avec des nouveaux concepts innovateurs sont prometteuses.
  • Six propositions sont examinées pour leur aptitude en tant que prototype de démonstration au Royaume-Uni. Toutes sont considérées comme des propositions valables à ce stade de la conception.
  • Le réacteur à sels stables de Moltex Energy apporte simplicité et avantages pour le Royaume-Uni en particulier.

3. Contexte historique

  • Le réacteur à eau pressurisée a été développé pour le programme de la défense et a été repris pour la production d’électricité.
  • Le RSF en tant que concept a été démontré avec succès dans les années 1960. Il ne répondait pas aux exigences de la défense et a été arrêté.

4. Une introduction à la technologie des RSF à combustible liquide

  • L’énergie nucléaire a une densité énergétique beaucoup plus élevée que d’autres sources.
  • Le combustible des RSF est dissous dans un sel liquide, ce qui apporte de nombreux avantages.
  • Ils opèrent dans un spectre rapide ou thermique, avec un grand choix de cycles de combustible.

5. Avantages des RSF

  • Les RSF peuvent être conçus avec une sécurité passive complète et aucune possibilité pour une dispersion généralisée de substances radioactives.
  • Ils ont un taux élevé d’utilisation de combustible et produisent peu de déchets à vie longue.
  • Les coûts d’une installation peuvent être comparables aux combustibles fossiles.
  • Les RSF offrent plus d’avantages que les autres technologies existantes ou avancées.

6. Défis des RSF

  • La technologie des RSF n’a jamais été disponible dans le commerce.
  • L’approbation réglementaire sera un processus long et coûteux.
  • L’expérimentation sera nécessaire pour certains nouveaux concepts et applications de matériaux.
  • L’obtention de financement est difficile en raison du long engagement requis et le risque élevé de mettre en œuvre une technologie de rupture dans un environnement très réglementé.

7. Réglementation nucléaire

  • Aucune expérience n’existe pour l’homologation d’un prototype de réacteur ou d’un nouveau site.
  • La charge réglementaire pour une technologie innovante est de la responsabilité du vendeur.
  • La véritable innovation est sévèrement limitée par le processus actuel.

8. Sélection du site

  • Le Royaume-Uni n’a pas d’installations pour la démonstration de nouvelles technologies de réacteurs.
  • Le processus de développement et le calendrier seront grandement simplifiés si un site avec une licence existante peut être utilisé.
  • Des RSF qui brûlent du plutonium pourraient être bénéfiques pour l’Autorité Britannique de Démantèlement Nucléaire (NDA) qui possède certains sites appropriés.

Bien que des avantages sont trouvés dans l’ensemble des modèles de réacteurs étudiés, le rapport conclut que le Réacteur à Sels Stables, la conception proposée par Moltex Energy, est la meilleure option à poursuivre. Le Réacteur à Sels Stables est un réacteur à spectre rapide de type piscine, mais sa caractéristique unique par rapport aux autres conceptions est que le combustible est statique. Pour la plupart des réacteurs à sels fondus, le liquide hautement radioactif est pompé activement à travers un échangeur de chaleur tandis que dans la conception de Moltex Energy les sels fondus radioactifs (composés de combustible nucléaire usé mélangé avec du chlorure de sodium pour réduire son point de fusion) sont contenus dans des tubes métalliques, semblables aux crayons de combustible dans les réacteurs traditionnels. Le flux de sels fondus dans les tubes est créé entièrement par convection naturelle, sans pièces mobiles, éliminant la possibilité de défaillance des pompes. Le bassin de liquide de refroidissement contient un autre type de sels fondus ce qui donne au réacteur une sécurité intrinsèque car toute fuite de combustible radioactif est mélangée et diluée dans ce grand bain.

Réacteur à Sels Stables Moltex
Contrairement à tous les autres modèles de réacteurs à sels fondus, cette conception n’est pas un dérivé du réacteur expérimental à sels fondus développé au laboratoire national d’Oak Ridge (où les RSF ont été initialement développés dans les années 1960), mais plutôt une vraie conception du 21e siècle. Avec toute une série d’autres avantages, le Réacteur à Sels Stables est conçu de telle sorte que tous les composants peuvent être construits dans des segments et assemblés sur le site d’une centrale. Cette conception modulaire est beaucoup plus simple et moins chère que les réacteurs d’aujourd’hui, ce qui permet d’envisager un déploiement d’autant plus avantageux.

Le rapport conclut que ce réacteur conçu au Royaume-Uni, « en raison de sa relative simplicité et des obstacles techniques relativement faibles et peu nombreux, est la configuration la plus appropriée pour un développement immédiat à l’échelle prototype au Royaume-Uni ».

Une partie du texte de cet article provient de celui publié sur le site du Alvin Weinberg Foundation par Suzanna Hinson.

Quel réacteur à sels fondus ?

La fission liquide présente tellement d’avantages que la question n’est pas si on devrait la développer, mais quel concept il faut retenir.

Quel RSF

Ca ressemble à une nouvelle industrie naissante, non ?

Produire de l’énergie nucléaire avec un combustible liquide, au lieu des technologies actuelles qui utilisent toutes des combustibles solides, nous permet d’envisager l’aube d’une nouvelle ère pour la fission nucléaire, avec une technologie de rupture plus sûre, moins chère, fiable, durable et propre – faisons la fusion du cœur AVANT de le mettre dans le réacteur !

Il est important de comprendre que la fission liquide est une famille de technologies, leur difference étant dans l’état de la matière de leur combustible. En modifiant des facteurs tels que choix et chimie des sels fondus, architecture, géométrie et taille du réacteur, vitesse des neutrons, traitement des déchets, refroidissement etc., il est possible, comme pour les combustibles solides, d’imaginer des dizaines de concepts différents.

Branches technologiques

Quelques exemples de branches technologiques de l’énergie nucléaire. La fission liquide est l’ensemble des branches vertes.

 Alors quelle branche verte faut-il développer ?

Grande question…

Dans la communauté internationale de la fission liquide, chaque personne ou groupe apporte une réponse un peu différente à cette question, en fonction de ses valeurs, sa compréhension des exigences et ses idées sur les solutions possibles.

Cependant, dans la façon de penser à ces systèmes d’énergie du futur, on distingue aujourd’hui deux grandes écoles, qu’on appelera ici l’école « Académique » et l’école « Start-up ».

L’école Académique est en grande partie issue des objectifs fixés pour les concepts développés dans le cadre du Forum International Génération 4 :

  • améliorer la sûreté nucléaire,
  • améliorer la résistance à la prolifération – en brûlant les stocks de plutonium,
  • minimiser les déchets – en recyclant et transmutant les actinides issus des réactions nucléaires,
  • optimiser l’utilisation des ressources naturelles,
  • diminuer les coûts de construction et d’exploitation des réacteurs.

Ce sont des objectifs pour satisfaire les clients de l’énergie, et plus largement pour refaire de l’énergie nucléaire une technologie socialement acceptable. Et dans ce domaine, la France peut se réjouir d’être un vrai spécialiste, avec le réacteur MSFR développé par le CNRS à Grenoble, qui a été sélectionné par le Forum GenIV en tant qu’hypothèse centrale pour le concept de réacteur à sels fondus au niveau international. La Commission Européenne a souligné l’importance de cet effort avec l’allocation au mois de février 2015 de plus de €3 millions pour approfondir les aspects de sûreté de ce concept, avec le programme SAMOFAR.

Albert Einstein a dit :

« Tout devrait être rendu aussi simple que possible,

mais pas plus simple. »

Un problème avec l’école Académique est justement que les objectifs sont un peu trop simples. Pour atteindre les objectifs, tout à fait louables, d’optimiser des facteurs tels que durabilité et déchets, il y a une tendance à orienter les choix technologiques sur des solutions qui n’existent pas encore et qui demandent un effort considerable de recherche et développement.

Ecole académique

Avec la technologie EPR en ligne médiane, où se situent les objectifs pour l’école « Académique » ?

La technologie nucléaire est difficile à financer – un développement sérieux de la fission liquide coûtera des centaines de millions d’euros (voire quelques milliards). Pour un investisseur, que ce soit un gouvernement ou une entreprise privée :

  • Effort de R&D important = Risque technologique
  • Risque technologique = délai de commercialisation & coût de développement importants

Risque, temps, coût. La minimisation de ces trois est l’objectif de tout investissseur. Un nouveau produit ou technologie obtient le financement nécessaire à son développement quand un équilibre est trouvé qui satisfait aux exigences de ses clients ET de ses investisseurs.

L’école « Start-up » de la fission liquide voit les choses différemment. Ici, la question est plutôt : Quel est le meilleur réacteur à sels fondus qu’on peut concevoir maintenant ? Avec :

  • Uniquement des technologies éprouvées et disponibles sur étagère
  • L’architecture et la conception la plus simple possible
  • Pas de nouveaux matériaux
  • Un cycle de combustible connu
  • Investissements chiffrés et maîtrisés
  • Production en série, modularité et fabrication des modules en usine
  • Plusieurs marchés cibles (chaleur industrielle, dessalement, hydrogène, carburants de synthèse…), pas uniquement l’électricité

La question étant posée différemment, la réponse est forcément différente aussi. Ce type de technologie serait moins performant en termes de durabilité et déchets (tout en restant bien supérieur à une technologie existante de réacteur à eau pressurisée comme un EPR), mais avec moins de risque technologique et une maîtrise des investissements serait bien plus intéressant pour un investisseur.

Ecole start-up

Alors, à quelle école faut-il donner raison ? Quelle approche doit recevoir le financement important qu’il faut injecter dans la fission liquide ?

La réponse est : toutes les deux. Elles sont interdépendantes et complémentaires.

  • Les nouvelles start-ups ont besoin du monde académique en tant que partenaire pour leur recherche, pour former leur personnel et pour construire et communiquer la vision long-terme.
  • Le monde académique a besoin des start-ups pour orienter les études économiques, et pour faire le retour d’expérience de la conception, construction, validation et opération des réacteurs.

La fission liquide doit sortir du laboratoire pour rivaliser et s’imposer au centre des marchés d’énergie – concurrencer en matière de coûts et de commodité avec le charbon et le gaz naturel. La planète ne peut pas attendre 30 ans avant sa commercialisation. Mais la fission liquide doit également montrer à un public sceptique de l’énergie nucléaire une voie vers une énergie réellement durable et propre, son acceptabilité sociale étant essentielle à son succès.

Ce n’est pas chose facile que de démarrer une nouvelle voie dans la technologie de la fission nucléaire. Cela représente un changement de paradigme, un investissement important, un grand col à traverser… Mais dans la vallée de l’autre côté de ce col, l’herbe est bien plus verte.

La cerise sur le gâteau

Si le thorium est si prometteur, pourquoi la France ne le fait pas ?

En novembre, le CEA a publié un article sur son site pour expliquer aux jeunes l’essentiel sur… une filière nucléaire au thorium.

Cliquez sur l'image pour l'article

Cet article entre directement dans le vif du sujet :

« le développement de réacteurs utilisant le thorium ne présente pas d’intérêt technico-économique sur le court ou le moyen terme ».

Et si c’est le CEA qui le dit, ils ont forcément raison. Donc voilà, pour tous les jeunes qui voyaient un nouvel espoir pour le climat et l’industrie nucléaire française, le débat est clos.

Mais attendez, lisons jusqu’au bout :

« LE THORIUM EST ENVIRON QUATRE FOIS PLUS ABONDANT QUE L’URANIUM »

– oui, effectivement.

« POUR AMORCER UN RÉACTEUR AU THORIUM, IL FAUT DE L’URANIUM »

– ouais, ou bien du plutonium, ou un mélange d’actinides mineurs.

« L’UTILISATION DU THORIUM REQUERRAIT DEUX FILIÈRES DISTINCTES »

– ah bon ? Attendez, qu’est-ce qu’ils disent là ?

« Le retraitement des combustibles usés au thorium … nécessite le développement … d’un procédé spécifique (procédé thorex) »

Ah oui ! mais ils parlent des combustibles SOLIDES !!! c’est ça en fait, la traduction de « sur le court ou le moyen terme ». Et il faut aller jusqu’à la dernière phrase du dernier paragraphe pour lire que :

« Le développement de réacteurs à sel fondu utilisant du thorium est étudié par le CNRS. »

Pas par le CEA ! Dommage, car c’est bien la transition de combustibles solides à des combustibles LIQUIDES qui peut amener une véritable révolution dans l’industrie nucléaire.

Cerise

Il est vrai que le thorium n’est pas une panacée. On peut très bien faire fonctionner un réacteur à sels fondus avec de l’uranium, du plutonium ou même avec les « déchets » des réacteurs actuels.

Mais il est vrai aussi que le meilleur réacteur à sels fondus qu’on peut imaginer serait bien alimenté par du thorium.

Et c’est pour ça que les deux sont souvent cités ensemble. Mais la plupart des bénéfices viennent du changement d’état du combustible : solide –> liquide. Par exemple, dans un réacteur à sels fondus les produits de fission gazeux se séparent du combustible tout seuls. Ils forment des bulles dans le sel liquide et peuvent être extraits avec un bullage d’hélium – un principe démontré par le réacteur expérimental à sels fondus en 1965. Cet avantage considérable (comme d’autres) est impossible avec un combustible solide.

En tout cas, la France bénéficie d’une politique très claire sur les réacteurs à combustible liquide :

Peut pas

…qui est illustrée par cette courte vidéo (un extrait d’une vidéo SFEN sur les réacteurs de génération IV)

Hmmm. On comprend maintenant pourquoi dans l’article du CEA on parle d’un « intérêt potentiel à très long terme ».

Bien sûr qu’un réacteur comme ASTRID serait beaucoup plus durable qu’un réacteur à eau pressurisée, mais si l’énergie produite n’est pas moins chère que celle du charbon (et le gouvernement pense que « Il n’est cependant pas acquis aujourd’hui que les objectifs fixés puissent être atteints à un coût raisonnable.« ), il sera difficile de convaincre les gens, en France et à l’étranger, de faire le saut de fossile à fissile. La Chine et le Canada ont compris les avantages des réacteurs à sels fondus. Seront-ils les futurs rois de la #FissionLiquide ?

Maquette du réacteur ASTRID sur le stand CEA du World Nuclear Exhibition, Le Bourget, octobre 2014

Maquette du réacteur ASTRID sur le stand CEA du World Nuclear Exhibition, Le Bourget, octobre 2014

Il est vrai que la France a un grand retour d’expérience avec les réacteurs à combustible solide refroidis par l’eau ou le sodium. Il est vrai que développer une nouvelle technologie, très différente de l’actuelle, est quelque chose de difficile. Mais ce n’est pas parce que c’est difficile qu’il ne faut pas le faire.

Enlevons les oeillères – dans la quête d’une planète à l’énergie abondante et au climat stable, il faut investir dans les solutions à réel potentiel. Espérons que les jeunes seront plus ouverts à l’innovation que le CEA.

Les énergies alternatives, avec 7PM Auto

Le site 7PM Auto a publié le 10 décembre 2014 une émission sur :

ENERGIES ALTERNATIVES ET CHUTE DU PÉTROLE : À QUOI ROULERA LA VOITURE DE DEMAIN ?

7pm-auto

Cliquez sur l’image pour voir l’émission

 

Présentée par Jean-François Rabilloud et Ali Hammami, cette émission a regroupé sur le plateau, Nicolas Meilhan (Frost & Sullivan), Véronique Saubot (Coronelli International), John Laurie (energieduthorium.fr) et Jean-Luc Ledys (SunPartner Technologies).

Dans les six dernières minutes de cette émission, John Laurie a parlé de la fission liquide, du thorium et de la voiture nucléaire.

L’émission complète est publiée sur le site 7PM Auto, ainsi qu’un extrait de 02:26 avec le titre « Décarbonons les carburants !«