Un nouveau rapport sur la fission liquide

Au Royaume-Uni, la société Energy Process Developments a publié un rapport avec le titre « Faisabilité de développement d’un réacteur à sels fondus prototype au Royaume-Uni« .

EPD

EPD a été créée en 2014 suite à l’annonce d’un financement de £100 000 du Technology Strategy Board, organisme stratégique du gouvernement britannique en matière d’innovation. Leur étude a été suivie par les universités d’Oxford et Cambridge, avec comme objectifs de :

  • Faire un examen complet de la technologie des réacteurs à sels fondus (RSF)
  • Identifier les développements récents dans ce domaine
  • Comparer les technologies offertes par 6 entreprises
  • Proposer la technologie la plus adaptée pour le développement d’un prototype de réacteur au Royaume-Uni

Technologies étudiées

Le rapport, publié en août 2015, est un document de 75 pages en anglais, disponible en format .pdf par simple clic sur ce lien. Chaque chapitre se termine par quelques lignes de synthèse, traduites en français ci-dessous :

Résumé

Les auteurs de ce rapport recommandent à tous les intéressés qu’ils devraient faire d’urgence les investissements nécessaires, ainsi qu’un engagement pour procéder avec un programme de réacteur à sels fondus, y compris un prototype de démonstration tel qu’identifié par cette étude.

1. Opportunités & aperçu de l’industrie

  • Le Royaume-Uni a un budget de R&D nucléaire inexistant par rapport aux autres grands pays.
  • Il existe une opportunité pour le Royaume-Uni d’avoir une part de £240 milliards dans un marché international du nucléaire de £1000 milliards d’ici 2030. Des RSF à combustible liquide peuvent être développés au Royaume-Uni pour alimenter ce marché.
  • Les RSF peuvent avoir le potentiel d’être plus économiques et sont plus sûrs que les technologies d’aujourd’hui. Les RSF peuvent traiter les stocks de déchets et de plutonium.
  • La prospérité, la consommation d’énergie, le gaz à effet de serre et la croissance démographique sont apparemment tous liés. Avec une source d’énergie propre et pas chère, ils peuvent tous être stabilisés.
  • Une action immédiate du gouvernement britannique peut lancer la technologie des RSF.

2. Concepts de RSF évalués par cette étude

  • La recherche et le développement mondiaux des RSF sont actuellement dirigés par la Chine. Ailleurs, de petites start-ups avec des nouveaux concepts innovateurs sont prometteuses.
  • Six propositions sont examinées pour leur aptitude en tant que prototype de démonstration au Royaume-Uni. Toutes sont considérées comme des propositions valables à ce stade de la conception.
  • Le réacteur à sels stables de Moltex Energy apporte simplicité et avantages pour le Royaume-Uni en particulier.

3. Contexte historique

  • Le réacteur à eau pressurisée a été développé pour le programme de la défense et a été repris pour la production d’électricité.
  • Le RSF en tant que concept a été démontré avec succès dans les années 1960. Il ne répondait pas aux exigences de la défense et a été arrêté.

4. Une introduction à la technologie des RSF à combustible liquide

  • L’énergie nucléaire a une densité énergétique beaucoup plus élevée que d’autres sources.
  • Le combustible des RSF est dissous dans un sel liquide, ce qui apporte de nombreux avantages.
  • Ils opèrent dans un spectre rapide ou thermique, avec un grand choix de cycles de combustible.

5. Avantages des RSF

  • Les RSF peuvent être conçus avec une sécurité passive complète et aucune possibilité pour une dispersion généralisée de substances radioactives.
  • Ils ont un taux élevé d’utilisation de combustible et produisent peu de déchets à vie longue.
  • Les coûts d’une installation peuvent être comparables aux combustibles fossiles.
  • Les RSF offrent plus d’avantages que les autres technologies existantes ou avancées.

6. Défis des RSF

  • La technologie des RSF n’a jamais été disponible dans le commerce.
  • L’approbation réglementaire sera un processus long et coûteux.
  • L’expérimentation sera nécessaire pour certains nouveaux concepts et applications de matériaux.
  • L’obtention de financement est difficile en raison du long engagement requis et le risque élevé de mettre en œuvre une technologie de rupture dans un environnement très réglementé.

7. Réglementation nucléaire

  • Aucune expérience n’existe pour l’homologation d’un prototype de réacteur ou d’un nouveau site.
  • La charge réglementaire pour une technologie innovante est de la responsabilité du vendeur.
  • La véritable innovation est sévèrement limitée par le processus actuel.

8. Sélection du site

  • Le Royaume-Uni n’a pas d’installations pour la démonstration de nouvelles technologies de réacteurs.
  • Le processus de développement et le calendrier seront grandement simplifiés si un site avec une licence existante peut être utilisé.
  • Des RSF qui brûlent du plutonium pourraient être bénéfiques pour l’Autorité Britannique de Démantèlement Nucléaire (NDA) qui possède certains sites appropriés.

Bien que des avantages sont trouvés dans l’ensemble des modèles de réacteurs étudiés, le rapport conclut que le Réacteur à Sels Stables, la conception proposée par Moltex Energy, est la meilleure option à poursuivre. Le Réacteur à Sels Stables est un réacteur à spectre rapide de type piscine, mais sa caractéristique unique par rapport aux autres conceptions est que le combustible est statique. Pour la plupart des réacteurs à sels fondus, le liquide hautement radioactif est pompé activement à travers un échangeur de chaleur tandis que dans la conception de Moltex Energy les sels fondus radioactifs (composés de combustible nucléaire usé mélangé avec du chlorure de sodium pour réduire son point de fusion) sont contenus dans des tubes métalliques, semblables aux crayons de combustible dans les réacteurs traditionnels. Le flux de sels fondus dans les tubes est créé entièrement par convection naturelle, sans pièces mobiles, éliminant la possibilité de défaillance des pompes. Le bassin de liquide de refroidissement contient un autre type de sels fondus ce qui donne au réacteur une sécurité intrinsèque car toute fuite de combustible radioactif est mélangée et diluée dans ce grand bain.

Réacteur à Sels Stables Moltex
Contrairement à tous les autres modèles de réacteurs à sels fondus, cette conception n’est pas un dérivé du réacteur expérimental à sels fondus développé au laboratoire national d’Oak Ridge (où les RSF ont été initialement développés dans les années 1960), mais plutôt une vraie conception du 21e siècle. Avec toute une série d’autres avantages, le Réacteur à Sels Stables est conçu de telle sorte que tous les composants peuvent être construits dans des segments et assemblés sur le site d’une centrale. Cette conception modulaire est beaucoup plus simple et moins chère que les réacteurs d’aujourd’hui, ce qui permet d’envisager un déploiement d’autant plus avantageux.

Le rapport conclut que ce réacteur conçu au Royaume-Uni, « en raison de sa relative simplicité et des obstacles techniques relativement faibles et peu nombreux, est la configuration la plus appropriée pour un développement immédiat à l’échelle prototype au Royaume-Uni ».

Une partie du texte de cet article provient de celui publié sur le site du Alvin Weinberg Foundation par Suzanna Hinson.

Publicité

Quel réacteur à sels fondus ?

La fission liquide présente tellement d’avantages que la question n’est pas si on devrait la développer, mais quel concept il faut retenir.

Quel RSF

Ca ressemble à une nouvelle industrie naissante, non ?

Produire de l’énergie nucléaire avec un combustible liquide, au lieu des technologies actuelles qui utilisent toutes des combustibles solides, nous permet d’envisager l’aube d’une nouvelle ère pour la fission nucléaire, avec une technologie de rupture plus sûre, moins chère, fiable, durable et propre – faisons la fusion du cœur AVANT de le mettre dans le réacteur !

Il est important de comprendre que la fission liquide est une famille de technologies, leur difference étant dans l’état de la matière de leur combustible. En modifiant des facteurs tels que choix et chimie des sels fondus, architecture, géométrie et taille du réacteur, vitesse des neutrons, traitement des déchets, refroidissement etc., il est possible, comme pour les combustibles solides, d’imaginer des dizaines de concepts différents.

Branches technologiques

Quelques exemples de branches technologiques de l’énergie nucléaire. La fission liquide est l’ensemble des branches vertes.

 Alors quelle branche verte faut-il développer ?

Grande question…

Dans la communauté internationale de la fission liquide, chaque personne ou groupe apporte une réponse un peu différente à cette question, en fonction de ses valeurs, sa compréhension des exigences et ses idées sur les solutions possibles.

Cependant, dans la façon de penser à ces systèmes d’énergie du futur, on distingue aujourd’hui deux grandes écoles, qu’on appelera ici l’école « Académique » et l’école « Start-up ».

L’école Académique est en grande partie issue des objectifs fixés pour les concepts développés dans le cadre du Forum International Génération 4 :

  • améliorer la sûreté nucléaire,
  • améliorer la résistance à la prolifération – en brûlant les stocks de plutonium,
  • minimiser les déchets – en recyclant et transmutant les actinides issus des réactions nucléaires,
  • optimiser l’utilisation des ressources naturelles,
  • diminuer les coûts de construction et d’exploitation des réacteurs.

Ce sont des objectifs pour satisfaire les clients de l’énergie, et plus largement pour refaire de l’énergie nucléaire une technologie socialement acceptable. Et dans ce domaine, la France peut se réjouir d’être un vrai spécialiste, avec le réacteur MSFR développé par le CNRS à Grenoble, qui a été sélectionné par le Forum GenIV en tant qu’hypothèse centrale pour le concept de réacteur à sels fondus au niveau international. La Commission Européenne a souligné l’importance de cet effort avec l’allocation au mois de février 2015 de plus de €3 millions pour approfondir les aspects de sûreté de ce concept, avec le programme SAMOFAR.

Albert Einstein a dit :

« Tout devrait être rendu aussi simple que possible,

mais pas plus simple. »

Un problème avec l’école Académique est justement que les objectifs sont un peu trop simples. Pour atteindre les objectifs, tout à fait louables, d’optimiser des facteurs tels que durabilité et déchets, il y a une tendance à orienter les choix technologiques sur des solutions qui n’existent pas encore et qui demandent un effort considerable de recherche et développement.

Ecole académique

Avec la technologie EPR en ligne médiane, où se situent les objectifs pour l’école « Académique » ?

La technologie nucléaire est difficile à financer – un développement sérieux de la fission liquide coûtera des centaines de millions d’euros (voire quelques milliards). Pour un investisseur, que ce soit un gouvernement ou une entreprise privée :

  • Effort de R&D important = Risque technologique
  • Risque technologique = délai de commercialisation & coût de développement importants

Risque, temps, coût. La minimisation de ces trois est l’objectif de tout investissseur. Un nouveau produit ou technologie obtient le financement nécessaire à son développement quand un équilibre est trouvé qui satisfait aux exigences de ses clients ET de ses investisseurs.

L’école « Start-up » de la fission liquide voit les choses différemment. Ici, la question est plutôt : Quel est le meilleur réacteur à sels fondus qu’on peut concevoir maintenant ? Avec :

  • Uniquement des technologies éprouvées et disponibles sur étagère
  • L’architecture et la conception la plus simple possible
  • Pas de nouveaux matériaux
  • Un cycle de combustible connu
  • Investissements chiffrés et maîtrisés
  • Production en série, modularité et fabrication des modules en usine
  • Plusieurs marchés cibles (chaleur industrielle, dessalement, hydrogène, carburants de synthèse…), pas uniquement l’électricité

La question étant posée différemment, la réponse est forcément différente aussi. Ce type de technologie serait moins performant en termes de durabilité et déchets (tout en restant bien supérieur à une technologie existante de réacteur à eau pressurisée comme un EPR), mais avec moins de risque technologique et une maîtrise des investissements serait bien plus intéressant pour un investisseur.

Ecole start-up

Alors, à quelle école faut-il donner raison ? Quelle approche doit recevoir le financement important qu’il faut injecter dans la fission liquide ?

La réponse est : toutes les deux. Elles sont interdépendantes et complémentaires.

  • Les nouvelles start-ups ont besoin du monde académique en tant que partenaire pour leur recherche, pour former leur personnel et pour construire et communiquer la vision long-terme.
  • Le monde académique a besoin des start-ups pour orienter les études économiques, et pour faire le retour d’expérience de la conception, construction, validation et opération des réacteurs.

La fission liquide doit sortir du laboratoire pour rivaliser et s’imposer au centre des marchés d’énergie – concurrencer en matière de coûts et de commodité avec le charbon et le gaz naturel. La planète ne peut pas attendre 30 ans avant sa commercialisation. Mais la fission liquide doit également montrer à un public sceptique de l’énergie nucléaire une voie vers une énergie réellement durable et propre, son acceptabilité sociale étant essentielle à son succès.

Ce n’est pas chose facile que de démarrer une nouvelle voie dans la technologie de la fission nucléaire. Cela représente un changement de paradigme, un investissement important, un grand col à traverser… Mais dans la vallée de l’autre côté de ce col, l’herbe est bien plus verte.

La cerise sur le gâteau

Si le thorium est si prometteur, pourquoi la France ne le fait pas ?

En novembre, le CEA a publié un article sur son site pour expliquer aux jeunes l’essentiel sur… une filière nucléaire au thorium.

Cliquez sur l'image pour l'article

Cet article entre directement dans le vif du sujet :

« le développement de réacteurs utilisant le thorium ne présente pas d’intérêt technico-économique sur le court ou le moyen terme ».

Et si c’est le CEA qui le dit, ils ont forcément raison. Donc voilà, pour tous les jeunes qui voyaient un nouvel espoir pour le climat et l’industrie nucléaire française, le débat est clos.

Mais attendez, lisons jusqu’au bout :

« LE THORIUM EST ENVIRON QUATRE FOIS PLUS ABONDANT QUE L’URANIUM »

– oui, effectivement.

« POUR AMORCER UN RÉACTEUR AU THORIUM, IL FAUT DE L’URANIUM »

– ouais, ou bien du plutonium, ou un mélange d’actinides mineurs.

« L’UTILISATION DU THORIUM REQUERRAIT DEUX FILIÈRES DISTINCTES »

– ah bon ? Attendez, qu’est-ce qu’ils disent là ?

« Le retraitement des combustibles usés au thorium … nécessite le développement … d’un procédé spécifique (procédé thorex) »

Ah oui ! mais ils parlent des combustibles SOLIDES !!! c’est ça en fait, la traduction de « sur le court ou le moyen terme ». Et il faut aller jusqu’à la dernière phrase du dernier paragraphe pour lire que :

« Le développement de réacteurs à sel fondu utilisant du thorium est étudié par le CNRS. »

Pas par le CEA ! Dommage, car c’est bien la transition de combustibles solides à des combustibles LIQUIDES qui peut amener une véritable révolution dans l’industrie nucléaire.

Cerise

Il est vrai que le thorium n’est pas une panacée. On peut très bien faire fonctionner un réacteur à sels fondus avec de l’uranium, du plutonium ou même avec les « déchets » des réacteurs actuels.

Mais il est vrai aussi que le meilleur réacteur à sels fondus qu’on peut imaginer serait bien alimenté par du thorium.

Et c’est pour ça que les deux sont souvent cités ensemble. Mais la plupart des bénéfices viennent du changement d’état du combustible : solide –> liquide. Par exemple, dans un réacteur à sels fondus les produits de fission gazeux se séparent du combustible tout seuls. Ils forment des bulles dans le sel liquide et peuvent être extraits avec un bullage d’hélium – un principe démontré par le réacteur expérimental à sels fondus en 1965. Cet avantage considérable (comme d’autres) est impossible avec un combustible solide.

En tout cas, la France bénéficie d’une politique très claire sur les réacteurs à combustible liquide :

Peut pas

…qui est illustrée par cette courte vidéo (un extrait d’une vidéo SFEN sur les réacteurs de génération IV)

Hmmm. On comprend maintenant pourquoi dans l’article du CEA on parle d’un « intérêt potentiel à très long terme ».

Bien sûr qu’un réacteur comme ASTRID serait beaucoup plus durable qu’un réacteur à eau pressurisée, mais si l’énergie produite n’est pas moins chère que celle du charbon (et le gouvernement pense que « Il n’est cependant pas acquis aujourd’hui que les objectifs fixés puissent être atteints à un coût raisonnable.« ), il sera difficile de convaincre les gens, en France et à l’étranger, de faire le saut de fossile à fissile. La Chine et le Canada ont compris les avantages des réacteurs à sels fondus. Seront-ils les futurs rois de la #FissionLiquide ?

Maquette du réacteur ASTRID sur le stand CEA du World Nuclear Exhibition, Le Bourget, octobre 2014

Maquette du réacteur ASTRID sur le stand CEA du World Nuclear Exhibition, Le Bourget, octobre 2014

Il est vrai que la France a un grand retour d’expérience avec les réacteurs à combustible solide refroidis par l’eau ou le sodium. Il est vrai que développer une nouvelle technologie, très différente de l’actuelle, est quelque chose de difficile. Mais ce n’est pas parce que c’est difficile qu’il ne faut pas le faire.

Enlevons les oeillères – dans la quête d’une planète à l’énergie abondante et au climat stable, il faut investir dans les solutions à réel potentiel. Espérons que les jeunes seront plus ouverts à l’innovation que le CEA.

Les énergies alternatives, avec 7PM Auto

Le site 7PM Auto a publié le 10 décembre 2014 une émission sur :

ENERGIES ALTERNATIVES ET CHUTE DU PÉTROLE : À QUOI ROULERA LA VOITURE DE DEMAIN ?

7pm-auto

Cliquez sur l’image pour voir l’émission

 

Présentée par Jean-François Rabilloud et Ali Hammami, cette émission a regroupé sur le plateau, Nicolas Meilhan (Frost & Sullivan), Véronique Saubot (Coronelli International), John Laurie (energieduthorium.fr) et Jean-Luc Ledys (SunPartner Technologies).

Dans les six dernières minutes de cette émission, John Laurie a parlé de la fission liquide, du thorium et de la voiture nucléaire.

L’émission complète est publiée sur le site 7PM Auto, ainsi qu’un extrait de 02:26 avec le titre « Décarbonons les carburants !« 

Présentation : « La voiture nucléaire »

Samedi 13 septembre, lors de la 4ième causerie de l’association Avenir Climatique, John Laurie a donné une présentation sur « La Voiture Nucléaire ».

La voiture nucléaire

La présentation entière est disponible à télécharger ci-dessous, en format Powerpoint ou .pdf, accompagné du texte de la transcription des notes en format Word. N’hésitez pas à utiliser et partager largement ces documents pour faire découvrir la voiture nucléaire à un public de plus en plus grand.

Télécharger la présentation       Télécharger la présentation       Télécharger le texte de transcription de la présentation (format .docx)

Invitation à causer de la Voiture Nucléaire

Vous êtes cordialement invité le samedi 13 septembre 2014 à une journée d’échanges à Paris pour causer, entre autres, de la Voiture Nucléaire.InvitationDans quel pays d’Europe peut-on (vraiment) conduire avec zéro émissions de CO2 ?
Comment peut-on décarbonner entièrement le secteur automobile ?
Que faut-il faire pour transformer votre voiture en voiture nucléaire ?

A 15h00, John Laurie présentera des éléments de réponse à ces questions. Ensuite, il y aura du temps pour les questions / réponses.

L’association Avenir Climatique a pour but de contribuer à faire des enjeux énergétiques et climatiques une priorité dans le monde étudiant. Elle est principalement constituée de jeunes actifs et d’étudiants et elle est indépendante de tout parti politique et de toute ONG.

Cette quatrième causerie aura lieu le 13 septembre 2014 dans l’amphi Rataud de l’Ecole Normale Supérieure, dans le 5ième arrondissement à Paris. Vous trouverez le programme sur leur site ou bien sur l’invitation à l’évènement. C’est ouvert à tous, membre ou non d’Avenir Climatique, experts ou grand public – vous pouvez d’ores et déjà vous inscrire avec ce formulaire. L’inscription est facultative et n’engage à rien mais elle aide AC à planifier l’évènement et leur permet de vous faire passer des infos.

Venez nombreux – il est bon de causer !

 

La Chine maintient le cap vers la fission liquide

Lundi 28/10/2013, dans une présentation à la conférence internationale ThEC13 au CERN, Hongjie Xu de l’Institut de Physique Appliquée de Shanghai (SINAP) a confirmé que la Chine poursuit son programme de recherche et développement de réacteurs nucléaires à sels fondus utilisant le thorium comme combustible.

 

Comme annoncé sur ce blog l’année dernière, le programme chinois regroupe 400 personnes. Avec un age moyen de 31 ans, ce groupe représente un investissement long-terme dans le futur de l’industrie nucléaire chinoise. Le budget est actuellement de 400 millions de dollars, mais Monsieur Xu a déclaré à la conférence qu’il va bientôt demander au gouvernement chinois d’allouer un budget supplémentaire de 2 milliards de dollars pour les prochaines phases du programme.

Un projet est un rêve avec un budget et un planning. Voici le planning chinois (traduit en français) :

Planning Chine TMSRDeux technologies sont en développement : la première à base de combustible solide TRISO dans des réacteurs à lit de boulets, et la deuxième avec des combustibles liquides aux sels fondus. Mais le programme chinois ne s’arrête pas aux réacteurs pour produire de l’électricité. Il couvre aussi :

 

  • La conversion de l’énergie nucléaire en combustibles liquides tel que le méthanol.
  • La production d’hydrogène nucléaire.
  • L’extraction des gaz de schiste / sables bitumineux et la conversion en gaz / pétrole.
  • Le refroidissement des réacteurs sans eau (qui est une ressource de plus en plus rare en Chine).
  • L’étude de réacteurs à sels fondus petits et modulaires, pour une production en masse moins chère et plus fiable.

La présentation de Hongjie Xu est disponible ici. A quand un programme européen pour concurrencer ce programme chinois visionnaire ?

Photo : John Laurie

La réserve française de thorium

La France possède assez de thorium pour fournir ses besoins en électricité pendant 190 ans.

Carte France Thorium

L’autorité de sûreté nucléaire française (ASN) a publié le 25 avril 2013 la version 2013-2015 du plan national de gestion des matières et déchets radioactives (PNGMDR).

Le Rapport complet est un document de 229 pages. Sur la page 76, on retrouve un tableau de synthèse des matières valorisables, qui donne les quantités que possède la France et le statut de la valorisation associée.

Tableau PNGMDR 2013-2015

Sur la page 79, il y a un paragraphe sur le thorium :

AREVA, le CEA et Rhodia sont propriétaires d’environ 8 500 tonnes de thorium, sous forme de nitrate et d’hydroxyde. Ces matières sont entreposées sur les sites de La Rochelle (environ 6 200 tonnes) et de Cadarache (environ 2 300 tonnes).

En effet dans les années 60 à Cadarache, il y avait une exploitation de minerai urano-thoranite pour extraire de l’uranium. L’uranium a été valorisé et le thorium a été laissé en sous-produit.

A La Rochelle dans les années 70, Rhodia a commencé le traitement d’un minerai monazite, avec un contenu en thorium de 6 à 7%, pour extraire les matières terres rares. Ces métaux ont une importance stratégique pour l’économie mondiale, le marché étant controlé presque exclusivement par la Chine. Le traitement a continué jusqu’à 1994, date de fin d’exploitation de la monazite à La Rochelle.

Le thorium est un élément fertile avec une densité d’énergie énorme, qui a une abondance dans la croûte terrestre équivalente au plomb. Il est converti en uranium 233 par l’absorption d’un neutron. La fission d’un seul atome d’uranium 233 produit 200,1 Méga électron Volts (MeV). Mais ce n’est pas au thorium en soi auquel il faut s’intéresser si on veut exploiter cette énergie – après tout, la fission d’uranium 235 produit 202,5MeV, et celle du plutonium 239, 211,5MeV. Notre attention devrait se focaliser sur le système d’énergie nucléaire qui est souvent associé au cycle de combustible au thorium.

Le secret est dans l’état du combustible. Les réacteurs qui fonctionnent aujourd’hui utilisent tous un combustible solide, et ils sont très, très inefficaces. Avec un combustible LIQUIDE, presque 100% de la matière peut être transformée pour libérer de l’énergie.

Un réacteur à sels fondus fonctionne à pression ambiante, ce qui simplifie considérablement sa conception et réduit son coût.  La haute température de fonctionnement permet de transformer entre 45 et 50% de l’énergie de fission en électricité, et l’état liquide permet d’extraire uniquement les produits de fission des sels, réduisant drastiquement les déchets en termes de quantité, durée de radiotoxicité et chaleur dégagée. Il est particulièrement bien adapté au cycle de combustible au thorium, et avec ce type de machine, on arrive à un rendement d’environ 1TeraWattHeure (Twh) d’électricité pour 91 kilogrammes de thorium.

En 2012 la France a consommé 489,5 Twh d’électricité. A ce niveau de consommation, les 8500 tonnes dans la réserve française pourraient fournir les besoins en électricité de la France pendant 190 ans. On n’aura pas besoin d’aller chercher le thorium par extraction minière pendant un moment ! Mais quand ce sera nécessaire, le coût et l’impact sur l’environnement seront négligeables.

Si l’humanité n’exploite pas cette énergie aujourd’hui, c’est parce que l’industrie nucléaire et les gouvernements mondiaux n’ont pas envie d’investir dans une technologie de rupture aussi radicalement différente que celles qui sont connues et maitrisées. Le chiffre des 190 ans restera une statistique intéressante tant que le système d’énergie nucléaire pour exploiter efficacement l’énergie du thorium n’est pas réalisé à l’échelle industrielle. Jamais une technologie pouvant apporter autant de bénéfices à autant de personnes n’a reçu aussi peu de financement.

Nouveau projet CLEF

L’humanité a un besoin pressant d’énormes quantités d’énergie propre pour limiter le réchauffement climatique et assurer la prospérité d’une population mondiale grandissante.

La fission nucléaire, avec la densité d’énergie extraordinaire de ses combustibles, permet de répondre à ce problème, mais le développement de la technologie actuelle atteint des limites qui sont liées à l’utilisation de combustibles solides.

Une nouvelle technologie de combustibles liquides est nécessaire pour lancer une deuxième ère de fission propre et moins chère que le charbon. La France est à la pointe du développement de ces technologies de fission liquide.

A Grenoble INP un nouveau projet structurant « CLEF » (Combustible Liquide pour une Énergie Future) a été lancé, qui permettra à 17 chercheurs de travailler ensemble sur les technologies de la fission liquide, et en particulier sur le concept du MSFR (Molten Salt Fast Reactor).

CLEF

Un document de synthèse décrivant ce projet est disponible en cliquant ici. Il s’articule autour de trois axes principaux :

  • Modélisation et simulation numérique du réacteur
  • Études des matériaux et de la chimie du sel combustible
  • Études de sûreté et de radioprotection

Les laboratoires grenoblois associés à Grenoble INP qui travailleront sur ce projet sont :

Avec un financement d’environ 200 000 Euros sur trois ans seulement, ce projet est loin des sommes nécessaires pour lancer un développement sérieux de cette technologie. Pour cela il faudrait que l’Etat français et l’Union européenne reconnaissent l’énorme potentiel de la fission liquide et lancent un projet de prototype, comme l’a fait la Chine. Mais le projet CLEF permettra de financer 3 post-doctorats et ainsi de former les personnes qui pourront porter ce concept dans le futur.